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I. INTRODUCTION

The research described in this report is concerned with the transient behavior of
linearly constrained wideband adaptive array sensors. The intent of this analysis is to
develop » cbmputationally inexpensive constrained sensor which is capable of quick
convergence in 2 dynamic signal environment. Variousl structures will be examined and
their transient performance will be evaluated through simulatior:. |

The use of multichannel space-time processors has a proven value in the detection
and esti“mation of signals which are received at épatially separated sensors. The benefi.t of
utiﬁziné such an array of receiving sensor elements to improve signal reception has long

i

been rééognized in the fields of communications [.1], radar [2], sonar [3,4] and seismology

[51.

In a dynamic signal environment it is desirable to have the processor sense the
|

|
presence of interference noise sources and automatically adapt itself in order to both suppress

i :
the intet%ference and enhance the desired signal reception. The manner in which these dual
functior;s are realized is through the use of an adaptive control system which updates the
parameters of an array processor in order to minimize some performance index. This process
is depicted in figure 1. The goal of the entire system is to produce an output which is the
best estimate of a particular waveform of the composite ohservation data in some statistical
sense. This must be accomplisiied with little or no a priori knowledge of the signal

environment. The first adaptive array research can be traced to the late 1950’s and early

1960’s [6,7,8,9]. Much research has been done on adapiive sensors since these early




X(k) Array Processor y(k)

R E————trel and
Beam Forming Network

Adaptive Control
— - System R

Figure 1 Adaptive Array Sensor

de\}élopments, angd the use of adaptive arrays have been incorporated into muny modern
signal processing systems. |

Thus, the problem at hand is characterized by a need to optimize the recéption of
one or more desired signals when multiple desired and uqdesired wideband directional
sources impinge upon an array of passive receiving sensor elements. »'fhe traditional solution
to this problem is the utilization of an adaptive tapped-delay-line filter following each
elen.ent of the array. The rationale for this solution is based upon the stability properties of
the finite impulse response ciass of filters coupled with the ability of the tapped-delay-line
filter to process signals which encompass an appreciable bandwidth. The choice éf adaptive
algorithm for updating the coefficients of the adaptive filters in this study is restricted to the
computationally modest stochastic gradient class.

The difficulty encountered with the traditional method of processing described above
is that a dependency exists Between the speed of convergence of the adaptive processoi and
the range of the eigenvaiues of the observation data correlation matrix. The methodclogy

which this research follows is to utilize different adaptive structures in an attempt to

2




transform the observation data into a domain such that the resulting transformed correlation

matrix exhibits a smaller eigenvalue spread or the aforementioned dependency is relieved.
| a Q ’ . . E ] B

This section will introduce the organization cf the research to be presented. Section
LB reviews estimazion theory and derives the discrete-time Wiener filter. In Section IC,
we extend the previous resﬁlts to the multichannel widetand array case. Section LD then
derives and analyzes the classical least-mean square (LMS) algorithm.

One short coming of the early LMS adaptive array systems was the degradation of
the desired signal while attempting toi minimize interference in the receiving sensor
sidelobes. Through the imposition of hard constraints on certain aspects of the processor
we can guarantee some desirable responses regardless of the external 2nvironment.

The constraint of interest in this research is realized by defining the frequency
response of the processor in the direction of the desired signal. Through the enforcement
of this frequency response in the desired signal direction, one guarantees _tha& the adaptation
process czn not cause its degradation. |

| The second chapter derives three linearly constrained wideband adaptive array
sensors with tapped-delay-line structure. The first of these, termed the direct form, was
| originally conceived by Frost [11]. The second form is a partitioned realization which is
shown to be identical to the direct form. This form, introduced by Griffiths [15], is deﬁved
solely to facilitate the development of the third form. The final form, termed the Generalized
Sidelobe Canceller (GSC), was first presented by Appiebaum and Chapman [12], and later

extended by Griffiths [13]. The GSC form is then used extensively in this research.




The thixd chapter is concerned with replacing the GSC tapped-delay-line filter

structure with orthogonal transform domain filter swuctures. The Discrete Fourier
Transform (DFT), Discrete Cosine Transform (DCT), lattice and Gram-Schmidt structures
are examined, and a new frequency subband normalizatior alg;or'ithrﬁ is introduced.

K Simulation results are presented to compare the different siructures.
The fourth chapter provides an overall comparison of the different structures
considered. examines the results of the last chapter, presents the conclusions of this research

and identifies areas for further research.

.l.‘ B E . . n y ]!a:. E.] .

This section considers discrete time estimation theory and derives the scalar form of -

the Wiener filter. The derivation in this section follows Gelb [32] and Widrow [20]. Fora
more thorough treatment and derivation in continuous time, one is referred to Van Trees

[16]. In simple terms, estimation is concerned with the use of information derived from

obscrvations in order to make decisions about parameters of interest that are optimal in some’

sense. The adaptive sensor problem is to estimate a signal of interest s(k), which is observed

only in the presence of additive noise n(k). That is to say, given a received observation

signal sequence x(k) such that
 x(k) =s(k) +n(k), k=1,2,... (1-1n
we desire to process it in order to obtain an estimate y(k) = ?(k). The observaﬁon_ data x(k)

is a random variable whose statistics are formed from those of both the signal and the noise.

The processing or filtering is shown in figure 2. In section A of this chapter we mentioned




Figure 2 Filtering Operation

X(k-J+1)

e

X(k-1) 71

jary
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Figure 3 Tapped-Delay-Line FIR Filter
that we were interested in an array processor which had a finite impulse response. The FIR
filter is represented by its impulse response denoted h(k) on the box in figure 2.
Consider the linear tapped-delay-line {(TDL) filter shown in figure 3. This filter
. L . -
clearly has a finite duration impulse response characterized by the sequence “
hiky=W (1-2)
5




where Wis a J-dimensional vector and the filwer is therefore termed a FIR filter of order J.

The notation Z~" in the boxes of figure 2 represent a unit time delay. We assume that the
filter is driven by the random process x(k) and that this process is wide-sense stationary; it
is characterized by a mean value which is independent of time
Elxk) = a , (1-3)
where ais a conslhm (assumed zero for simpliciiy) and a correlation function
Elx(m)x(n)] = ru(man) = rx}(m-n) = ’u(’T) (-4
with t being an integer value. The filter output may be expressed as the convolution sum
J ' ‘ (1-5)

Mk = Y, wax(k-m+1)

m=l
We now assume for the following derivation that there is some desired reference
signal, d(k). available which represents the desired system output. Then the residual or error

signal e(k)is defined as
€(k) = d(k) -- y(k) (1-6)

We desire to find the optimal values of the filter coefficients W,- which minimize this error
signal in some statistical sense. In Wiener filter theory [19] the performance function that
is used to optimize the filter coefficients is the mean-square value of the error signal.
The mean-square value of equation (1-6) is represented as
E( (k)] = Eld’ (k) - 2 Eld(k) y(k)] + Ely (k)] (-7

and through the substitution of equation (1-5) into equation (1-7) we may write

J J J " (1-8)
E[e%(k)} = Eld *(0)] = 2 Y, wm E[d(k) x(k-m+1)] + Y Y wmwa Elx(k-m+1) x(k-n+1)]
m=] m=l a=)




We now assume that the medium through which the signal propagates to reach the sensor

is linear and time-invariant. Then the desired signal component s(k) of the obscrvation data
x(k) is related through a lincar time-invariant transiormation to the desired reference signal
d(k). Furthermore, we then assume that x(k) and d(k) are jointly stationary. Tﬁis means
that the expression in equation (1-8) is the sum of the mean-équared value of the desired
response, a function of the cross-correlation of the desired response with the observation
signal and a function of the correlation of the received observation signal. Thus, equation

(1-8) may be written as

J J . (i-9)
El¥0) = E[d X0 -2, wm rxam-1)+ Y, T i wn rus(n-m)
m=1 m=1 n=1

where the cross-correlation and input correlation are, rcépectively
ref(m-1) = E[d(k) x(k-m+1)] (1-10)
rxx(n-m) = E{x(k-m+1) x(k-n+1)] 1-1n
Itis convenient to now change notation from scalar representation to matrix form, and deline

the observation vector and weight vector as

. x(k) wi(k) (1-12)
x(k-1) wa(k)
X(k) = ) W) =
x(k—:l+l) w _,'(k)

where we have explicitly shown the time-dependency of the filter coefficients. Suppressing
the matrix time-varying notation and recognizing from equation (1-5) that the output may
be expressed as y = wTx, equation (1-9) is equivalent to

E[e%(k)] = E[d 20)] - 2 RTW + WTR.W C(1-13)




where the cross-correlation vector R,4 and the correlation matrix R, are formed in a manner

analogous to the scalar case in equations (1-10) and (1-11):

dixky 1 [ rea(®) o (-14)
d(k)x(k-1) rxa(1)

Rxd=E : =

d(k)x(k.'—hl) fxd(} -1)

) Moxk=1) ... x(xk=J+1) | a-18)
x(k~1)x(k) Pk-1) . xtk=Dx(k=J+1)
Ri=E '
x(k-J+Dx(k)  xk=Jebxk-1) . Xk=J+D)
rxx(0) -1 . . . ndl-D)
rx(1) ra(0) ... (2=
"n(-'—l) r,u(.,"'2) e ’xx(o)

From equation (1-13) we cah sce that the mean-square error is ,quadratic in terms of the
weight vector. This dependency results in a bowl-shaped performance surface. This surface
must be concave upward since a negative mean-square error is not physically realizable.
The objective is to design the filter such that we operate on the bottom of this performance
surface. Since the surface is quadratic, we seek the sole global extreme value.

. The gradient of the performance suriace can be obtained by differcntiating equation
1-13)

2 (1-16)
Mw= a_g.[;/—] = ZRxxw - ZR.zd

Setting this vector equal to zero to find the extremum yields




—— e 7 . e

RuW=Ru (i-17)

and we find the optimal weight vector is
Wopr=Ri'Ru (1-18)
which is the Wiener—Hdpf equation in matrix form. Examining etjuation (1-17) in scalar

form, the optimal weight values are given by the solution to the equation

/ 1-19)
Z Wopty dm=n) = rygin-1),  n=12,...J

m=1
A tapped-delay-line filter whose impulse response is defined by equation (1-18) or (1-19)
is said to be optimal in a mean-square sense. The filter output realized by W, is denoted yopr,
and is the best estimate (in a mean-square sense) of the desired response given the

observation input. This may be expressed as

J (1-20)
Yopi(k) = Ak k~1,....k-J+1) = 3 Wopt, x(k-m+1)

m=1

Therefore, using (1-10) and (1-11), equation (1-19) can be written as

J 1-21)
Z Woptn Elx(k-m+1)x(k-n+1)] = E{d(k)x(k~n+1)), n=1,2,...0

m=1

This is equivalent to the statement

J _ 1-22)
E[(d(k)~Y, Woptn x(k=m+D)x(k-n+1)] =0, n=12,.J
m=1
and finally, using (1-20)
E[(d(k) - yope(k))x(k-n+1)] = Eleopdk)xtk-n+1)] =0, n=12,.J (1-23)
where &, is defined as
Eopr(k) = d(k) ~ yopi(k) (1-24)
9
/ y e
/ 7 ’/;, T
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Figure 4 Orthogonality Condition

Two important results now appear from this derivation. First, equatioh (1-23) states that the
error signal and a:.y of the observation signals are orthogonal in the optimal filter. Second,

. the error signal €, and the output y, are orthogonal since

J ;- y (1-25)
EleopAk)yopi(k)] = Eleopik) Y, Woptux(k=m+1)] = 3. Wopt,, El€opfK)x(k-n+1)] = 0
m=1 m=1 '

This condition, depicted in figure 4, ensures that the error signal vector is minimum.

C. The Multichannel Array Sensor

|

\ We now extend the resu]Ls of the previous section to the multichannel case of interest.
The ‘ ideband multichannel model is depicted in figure S for an array composed of K sensor
elements and J taps per element. It was mentioned in section LB that signals whose spectrum
can not be adequately characterized by a single frequency must be processed by a filter Which
is capable of realizing a broadband frequency response. If the TDL filter tap spacing is

sufficiently close and the number of taps is large, then the filter will approximate an ideal

10




X (k) XK"?(k)r—w

By
: yk

X, (K X, (k) X ()
w, 0 w0 () O ' W, (0

Figure 5 Wideband Muiltichannel Array

filter which exhibits exact control of gain and phase at each frequency of interest. The
sampling theorem [49] may be used to define the filter bandwidth. Consider a continuous
input signal which is sampled by one TDL filter. The sample sequence defined by the signals
appearing at the TDL taps uniquely characterize the corresponding waveform from which

it was generated provided that the continuous signal is bandlimited with its highest frequency

component fmax less than or equal to one-half the sample' frequency corresponding to the

time delay A, or fnax < 1/2 A, The total bandwidth of a bandiimited signal is 2 frmax, SO that
a TDL can uniquely characterize any continuous signal having a bandwidth less than or
equal to 1/A Hz; the signal bandwidth of the TDL filter.

The received observation data for the array in figure 5 is the sum of the directional
signals impinging upon the array and the thermal noise present on each element. The signals

are assumed to have been produced by sources in the far field which propagate through the

1




medium surrounding the sensor. We now define the KJ-dimensional vectors X(k) and

W(k) as

[ x1(k) ] _ wi (1-26)
x2(k) Xi(k) w2
. Xi(k-A) .
Xk=} . |= . W) =
. X(k-(J-1)A) .
| xxs(k) WK, |

-

where X(k-IA) for 1=0,1,..,/-1 is the K-dimensional vecwr of the observation signals
present at the column of weights following the I-th delay. The signals are assumed to be
plane waves, so that if we letu representing the directional signal unit vector, r be the sensor

coordinate vector and v denote the propagation velocity, then the intérsensor delay may be

written as

uer a-2n

L=

v
where the (-) operator is the standard vector inner product. Assuming that the reference
element is the top sensor of figure 5, then we may express the K dimensional vector of

directional signals Si(k) as

[si)) [ sy ] (1-28)
s2(k) s1k-ti) e

S{ky={ . |=

x| | s16k-(R-1) %)

For the K-dimensional vector of array observation signals' Xi(k) the correlation

matrix E:,(‘C) is of dimension K x K and is given by

R = EXox k-] (1-29)
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For the KJ-dimensional vector of all observation signals X(k) the correlation matrix is of

dimension KJ x KJ, and is given by

Rex(v) = E[X(h)XT (k-1)) (1-30)

which méy be written as

[ . ‘I?,x(t) &(HA) . . E;x(‘t+(.l-1)A)- (1-31)
R0 By .

" Rul(®)= '

Ra-na) o - - R

We assume that the signal and noise components of the observation data are indepengent.

Then
Rux(T) = Ris(T) + Run(T) (1-32)

where R;5(t) and Rpn(t) are the KJ x K! dimensional correlation matrices of the received
desired signal component and noise component, respectively, of the observation data:
Rus() = EISK)ST (k-v)] | (1-33)
Run(v) = EIN(ON" (k1)) (1-34)
At a zero time shift, it is well known [11,20,33] that fo. the case of interest Ryy and Ry, are
positive definite matrices and Rys is generally at least positive semi-definite. For the
remainder of this research, any second moment not explicitly containing a time delay
argument will be meant to denote the second moment at zero time delay.
The optimal weight vector in the minimum mean-square error sense for the wideband
multichannel array of figure 5 is given by the Wiener-Hopf equation

Wopt = Rx) Rua (1-35)

13




- statistics; and the implementation of a direct solution requires highly accurate estimates and

~ results in an open loop control.

where Ry is now of dimension KJ x KJ as shown in equation (1-31) and Rygis a KJ x 1
vector formed in a manner analogous to equation (1-14), but using the vector X(k) given in

equation (1-26). This is the same solution as that of Widrow [20, equation 2.17].
D._The IMS Algorithm

The requirement which exists for the array processor is to Solve the Wiener-Hopf
equation for the optimal weight vector. This‘ solution fequires knowledge of both Ryx and
Ry4. In the problems of interest, the correlation'mat.rix Ryx is unknown while, in general,
the cross-correlation vector Rxq may not be available. One method of obtaining the solution
Woﬁld be the direct estimation of these values foilowed by their substitution into the
Wiener-Hopf equation. Monzingo and Miller [34] describe the drawbacks of this approach.
In summary: potentially serious computational problems arise in compuiing and inverting
Ryxx; the number of measurements and computations needed to accurately estimate the

elements of R,{x and Rx4 is large and requires repetition upon éhange of the input signal

Another method of solving the Wiener-Hopf equation is to solve for the optimal

weight vector iteratively through a gradient search procedure. The LMS algorithm [23]is-

one of the family of gradient search techniques for descending towards the performance
surface minimum. Not having a priori knowledge of W, , we begin at some arbitrary
weight va'ue W(0) and estimate the.gradient at this point. We choose the next weight value
to be the value of the current weight plus an increment preportional to the negative slope

estimated. This procedure leads to the iterative procedure

14




Wik+1) = W(k) + u( ~STw(k) (1-36)
where ICIW(k) is the estimate of the gradient at time k and [ is the step size of the incremental
walk to the bottom of the performance bowl. It will soon be Iseén thet p also controls the
stability and the rate of convergence of the algorithm.

= ;}' The key to the LMS algorithm is that it views &*(k) to be an estimate of the

mean-square error E[sz(k)]. Thus, the gradient 2stimate is given by

e QR o e o 20k - WX (1-37)

Rrwik) = W0 = Z M3y = 260 Wi = =26 (k)X(k) :

yielding the LMS algorithm
Wk+1) = W(k) + 2 pe(h)X (k) ] (1-38)

The LMS algorithm is now demonstrated through a simple narrowband scalar
el example motivated by Widrow [20]. The purpose of this example is to provide a gx?'aphical
understanding of ihe gradient search technique used in the LMS algorithm and to eixamine

the effects of noise in the development. Consider a tapped-delay-line filter with onje delay

and two taps (order J=2). The input signal is a sinusoid given by s(k) = sin(%) ;‘and the

- - desired signal is d(k) = 2 cos(-zjsik-). The observation data x(k) was then formed in both the

case where n(k)=0 and for n(k) being a zero-mean gaussian random variable with power
P,=0.01. The correlation matrix and the cross-correlation vector were computed from
equations (1-14) and (1-15). The weight vector was found from (1-18), and the performance
;‘/, / . surface given by (1-13) was then plotted as shown in figure 6. The LMS algorithm was then
executed through 500 iterations with a step size u =0.05 and an initial condition of

W(0) =0. The contou- plot in figures 7 and 8 depict the noise free and additive noise

-, 15




A7

performance surface éeawhes. respectively.  Figures 9 and 10 show the weight vector
transients. Figures 11 and 12 prescﬁt plots of the estimated mean-square crror,'vtermcd
’learning curves’ by Widrow. Figures 13 and 14 show the estimation error,.a mezsure of
the convergence of the adaptive algorithm, for the no noise and noisy cases, re,.épcctively.
The reduction of the area under the learning curve and the reduction of estimatib_n error arc
the two key indicators of thé dynamic response or transient behavior of the adaptive filter.

The convergence of the LMS algorithmv to the optimal wei ghf vector soluiioh is now
considered. The derivation in this section follows that of Widrow [20]. As previously
mentioned, the LMS algorithm utilizes the square error as an estimate of the mean-square
error. From equaticn (1-37) we see that this léads to an unbiased estimate when tﬁe weight

vector is held constant.

ETftw(k)] = ~2E[(d(k) - y(k)X(K)] = Z(Rxxw - Rxd) =Mw(k) (1-39)

»
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Since the weight vector is not constant but changes with each iteration, we now examine the

dynamic weight convergence. It is assumed in the t'dllowing development that successive
obscrvation data vectors are independent, which allows the weight vector to be treated as
though it was independent of the observation data process. It is noted that while this may
be unnecessary, it will be used to Simplif y &e following derivation. Then the expected value
of equation (1-38) yicelds

E[W(k+1)] = E[W(k)] +2p(R,‘d - R,_,E[W(k)]) (1-40)
Rearranging equation (1-18) or (1-35) to yield R.s = R. W, we ﬁnd

E[W(k+1)] = (I - 2URDE[W(K)] + 2uR W, p; ‘ (1-41)
Proceeding with the derivation at hand, we define the weight error vector to be the translation

vector T

T(k) = W(k) = Wop: (1-42)
In order to diagonalize (I - 2uR..), the coefficient matrix of E[W(k)] in (1-41), we define
the unitary matrix Q which performs a rotation upon T (introducing the new vector V) and

the similarity operation upon the correlation matrix

T=QV (1-43)

Ru=QAQ T (1-44)

where A is a square diagonal matrix whosg element on the I-th row is the [-th eigenvalue of
the correlation matrix. The /-th column of @ is the corresponding eigenvector. Using the
Wiener-Hopf equation and substituting (1-42) into (1-41), the weight vector error equation

becomes

E[T(k+1)] = (I - 2uR) E[T(k)] (1-45)

21




where the simplification falls out of the algebra upon the expansion. Utilizing our
transformations defined in (1-43) and (1-44), we may express this as .

| E(Vike 1] = (@7'1Q - 240 "'Ru@ JEIV(] = (1 = 20MELVR)] - (146)

Finally, throngh the iteration of (1-46), we find the solution

EVR)] = (I- 2uA) V(0) (1-47)

The weight convergence question is now answered by considering whether the error vector

W(k) — W, converges to zero. Mathematically, this is equivalent to

lim(Z - 2uA )" =0 (148)
k—oe :
or, since both matrices inside the parenthesis are diagonal,
(1-49)

lim(1-2pA) =0

k —oe

where A; denotes the i-th eigenvalue of the observation correlation matrix. Thus, for
convergence, the step size 1 must be chosen such that
(1-50)

1
O<u<m

where Am is the largest eigenvalue of R,.. The translation vector V(k) thus obeys a

trajectory which is the sum of n modes, where the correlation matrix is of dimension n x n,

and the i-th mode i: proportional to (1 ~2 l,-)k. The speed of convergence is governed by
p. If the step size is too large for equation (1-50) to be satisfied, then one 6r more modes
of the translation vector will be larger than unity in magnitude and the érror will increase in
time. For a fixed step size, the speed of convergence is dominated by the slowest mode.
The eigenvalue spread of the correlation matrix (the ratio of largest to smallest eigenvalucs

or the condition number of the matrix) is therefore an indicator of the convergence speed of
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the LMS algorithm. The larger that the ¢igenvalue spread of the observation correlation
matrix is, the slower the convergence of the algorithm.

The above results éan be used to better understand figures 7 through 14. Comparing
figures 7 and 8, it is apparent that the noisy gradient estimate does not immediately approach
the minimum mean-squaré error solution, but walks around the bottom of the bowl. This
causes the weight jitter seen in comparing the noisy weight vector transients of figure 9 to
those of figure 10. From equation (1-49), we see that the leaming curves in figurcs 11 and
12 should decay according to geometric ratios of the form (1 -2 p 1)), yielding a time

constant for the i-th mode of

. (1-51)
T4uA

T
where we have used the convention of Widrow that the time constant of the mean-square
error learning curve is one-half that of the geometric decay [14]. The noisy estimate of the
mean-square error causes the jitter shown in figure 12. The estimation error in ﬁgures 13
and 14 depict the amount of time it takes for the adaptive filter to learn the amplitude
difference and phase shift between the desired signal and the observed signal and, in figure
14, the error is at first sinusoidal and then becomes incréasingly random.

The requirements of the LMS algorithm are evident througﬁ the examination of
equations (1-39) and (1-40) and the fact that the LMS approximation is accomplished by
estimating the unknown average values with the available present values; in essence

dropping the expectation operator. Specificallv, a desired signal is required and the

correlation matrices are approximated by

Rux(k) = X()X (k) (1-52)
Reathy = Xod (o) (1-53)
23
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The desired signal requirement has been addressed by Widrow, who derived training

schemes to provide this signal [17], and Compton, who demonstrated that the algorithm can
be successfully applied to communications when the desired inf ormalioﬁ carrying signal is
unknown but some of the characteristics of it are available [18].

Griffiths modified the LMS alécrithm through recognizing that a priori knowledge
of the desired signal correlation funcﬁdn. its direction of arrival and the array geometry allow
the received cross correlation vect.or to be defined [33]. This relieves the algorithm of the
desired signal i'equirement and allows the vector Ryq to be formed off-line. The only
real-time estimate that must be formed in Griffiths’ LMS scheme is the correlation matrix
Rxx. | |

The principal' algorithm of interest in this research is a linearly constrained LMS
algorithm. This algorithm, presented in the next chapter, will be seen to utilize a directional
constraint in order to completely relieve any requirement of a desired signal or its statistical
characterization. In fact, the desired signal d(k) is taken to be identically zero. The
correlation matrix Rxyx, as with Griffiths’ algorithm, ié the only required real-time estimate

and the necessary a priori information is simply the direction of arrival of the desired signal.
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Il. CONSTRAINED PROCESSORS WITH TAPPED-DELAY-LINE STRUCTURE

The first constrained adaptive array to be derived is termed the "direct form". A
second form, which is a partitioned constrained processor, will then be developed from the
direct form. This processor and the direct form will be shown to have identical performance.
A third form, referred to as the "Generalized Sidelobe Canceller" or GSC will be shown to
be a partitioned processor which utilizes a methodology to separate the constraint from the
adaptive beamformer in a ménner which results in an unggnsmmngd adaptation.

A. Direct Form Processor

The derivation in this s.ection follows that of Frost [11]. The geometrical
interpretation and portions of the algorithm development have been expanded. A direct
form constrained processor with K sensors and J taps per sensor is displayed in figure 15.
We assume that the array has been electronically pre-steergd so as to be parallel to the desired
signal’s wavefront through the use of the shown steering time delays. This is referred to as
a signal aligned array. |

The received signal X(t) is a composite of the desired signal S(t) ahd_noise N(). The -
noise itself may be a composite of passive and active noises. An example of passive noises
would be the thermal noise present on each element, while ah exarhple of active noises might
be hostile jammers. The signals are sampled and processed so that the received signal at the

k-th sample may be written as:

X(k)=S(k)+N(k) 2-1)
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Figure 15 Direct Form Tapped-Delay-Line Processor

The signals in this derivation are assumed to be realizations of zero mean stochastic

processes with unknown second order statistics. The notation that will be used to describe
the signal correlation matrices is:

Ra=E[X(k)XT(K)]

| 2-2)
RunsE[N(K)NT (k)]
Ru=E[S(k)ST(k)]

The desired signal S(k) is assumed to be uncorrelated with the noise N(k).

The signal X (k) impinges on the sensor array and arrives ateach element at a different

time determined by the array spacing and the composite signals direction of arrival. Since




O

the amay is assumed signal aligned, the look direction wavetforms S(k) are the same down

each column of the array.

The KJ dimensional stacked vectors of look direction waveforms S (k), noises

N (k) and weights Wpr (k) may be written as: _

[ s(k) 1 ‘ ) ' ) 23 .-
s(k) [ m(k) ] wor, (k)
: n (k) wpF, (k)
s (k) ' '
s(k=-A)
; s(k-4A)

S(k)= S(k—A) , N(k)= , WoF (k)=

s(k-(J-1)YA)
s(k-(J-1)}A)

_nKJ(k)d bwDFxl(k)_

| s(k-(J-1)A) |
where A is thz delay time introduced between successive taps in the array. The subscript
DF will be suppressed for the remainder of section A, and will only be used in subsequent

sections to clarify the array form being referenced as needed.

1) The Adaptive Algorithm: The algorithm for adapting the direct form weights

must be capable of maintaining a chosen frequency response in the look direction while
minimizing the output power in other directions; power which is due to undesirable noises.
As previously shown, the desired signal produces identical components on each column of

taps while the noise arriving from other directions will not in general produce equal
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components at the tap inputs. The received composite signal at each uip is multiplied by Eli
corresponding weight and summed to produced the array output. It is therefore evident that
under these conditions the multichannel processof appears as a single channel
tapped-delay-line with respect to the desired signal. vThis equivaleht single channel filter
has weights which are equal to the sum of the weights in the corresponding vertical column
of the multichannel processor. This is shown in figure 16 for a three tap three channel array.
Through constraining the sums of the weights in each of the J vertical columns to have some
value fj , we have in fact fixed the frequency response of the processor in the look direction.
The cost of demanding this response is the loss of J degrees of freedom. Thus, only KJ-J
degrees of freedom in choosing the weight values may be used to minimize the total output

power from the array processor. Minimization of the total array output power subject to our

s(k) =] s{k-&y =] s(k-22)
w1 i W4i W7 ‘
8(k-24)

s(k) = s(k) =
W2 i wsi wa.
s{k) s(k-2) s{k-24)
(=] (=]
W W WelR

o 8(a) s{k-a) __ 8{k-22y
TR R Ry

H=W1+W2+W3
2=W4+WS+W6
| 13=W7+WB+W9

Figure 16 Equivalent Look Direction Processor




constraint is equivalent to minimizing all non-look dircction noises as long as the desired

signal is uncorrelated with the noise.
In terms of the signal and weight vectors, the look direction constraint may be
expressed as

c'w=F (2-4)

where the KJxJ matrix C and the J vector F

1, ] ; @5
Lo ||

0o - H
lk ‘ .

L -

effectively define the sums of the weights on cach column of taps.
The output of the processor at the k-th sample is
y(k)=WT(k) X (k) 2-6;
and the expected value of the array output power is
E[Y(k)1=WTR,W @-7)
The problem at hand is to find the optimum weight vector W that will minimize the array

output power (a scalar performance index)

(2-8)

subject to the constraint
g=CTW-F=0 (2-9)
The constrained optimization problem can be reduced to an unconstrained problem through

the use of Lagrange multipliers [10]. The Lagrangian for this system is

H=L+lrg=%wrkxxw+;"T(CTw,p) -10)
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"where A & R is an undetermined vector Lagrange multiplier The necessary conditions ‘or

optimality are

oH Q-1n

I A Tw=
Hw—aw-o and C VY—F

Taking the gradient of the Lagrangian
' | | Hw=RxW+CAL =0 ‘ 2-12)
and solving for the optimal weight vector yields
Wopr=-R31C A @2-13)
Since Wopy mﬁst satisfy we constraint
-CTR:'C A=F @19
we find that the optimal value of the Lagrange multiplier is
A=-[CTRICT'F @-15)
and the optimal weight vector may be written as
Wop=R3 € [CTRS C17 F . - @19
The constrained least squares estimate of the look direction signal is given by
Yopt (k)= Wi X (k) @17
If we now assumé forr the time beihg thah kxx | is rknci)\ravn, we may defiiré the
deterministic constrained least mean square (CLMS) algorithm. The initial weight vector
is to be initialized on the constraint plane and subsequently moved in the direction of the
negative gradient at each iteration. The adaptive step size used to walk down the
performance surface is proportional to the magnitude of the gradient. The weight state and

costate equaticns-are given by

W(k+1)=W(k)-pHw =W(k)~u[RaW(k)+C A(k)] (2-18)
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(2-19)

l.(k)=-_u—l(CTC yFUF-CTW(k))=(€TC )y € TRy W(k)

ThetermF-C T W (k) in the costate equation permits the algorithm to make corrections
for small deviations on the constraint, preventing large errors due to the accumulation of
slight trajectory flaws. Substituting the weight costate egnation into the weight state

equation yields the CLMS algcrithm

W(k+1)=P [W(k)-uRW(k)1+Q (2-20)
where
P=In-C(cTcy'cT @21
and
g=Cc(cTcy'F 2-22)

This deterministic solution requires the a priori knowledge of the signal correlation matrix

Rxx . The stochastic CLMS algorithm is obtained by estimating the correlation matrix at
each iteration. A readily available estimate is formed at the -tk iteration by

Ra=X(k)XT (k) @-23)

where we note that other estimates of the correlation matrix may have been used in place of

equation (2-23). This form of tipe estimate, which is made up of the outer product of the

available tap voltaze vector, is y%he: simplest, and is consistent with the LMS algorithm.

Thus, from equations (2-20) and\"(2-23), we find‘ that the weight update equation may now

be writien
W(k+1)=P [W(k)-py(k)X(k)]+Q (2-24)
For later comparison, a signal flow block diagram is presented in figure 17. Note

that the pre-steering filters for the signal aligned array are not shown in block diagrams. For

k) |




X(k) y(k)
- > W(k)
CLMS

Figure 17 Direct Form Block Diagram

the remainder of this research we will be solely concerned with linearly constrained
Minimum Variance Distortionless Responise (MVDR) adaptive array sensors. In terms of
the direct form processor, this may be realized by enforciﬁg the condition that the vector
F be composed of one reference element equal to unity and the remaining elements equal

10 zero. All of the results presented, however, will be general in nature and not reliant upon

this emphasis unless explicitly stated.

2) Geometrical Interpretation: The geometrical analysis of the CLMS algorithm
requires 2 number of definitions and propositions. These are presented in appendix I. The
CLMS algorithni will new be shown to have a very simple representation. In addition, the
relationship between the CLMS algorithm and the standard LMS algorithm will become
evident.

We now consider the geometrical interpretation of the CLMS algorithm. Consider
the diagram shown in figure 18. The subspace X is that subspace which satisfics the
homogeneous form of the constraint equation. Thus, X is the nullspace of the matrix C

defined in equation (2-5). This subspace will be termed the homogeneous constraint
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Q=(W.C' W=Ff}

I =(W:C’' W=0}

Figure 18 Geometrical View of CLMS Algorithm

subspace. The constraint equation, equation (2-4), ensures that the vector W, terminates
on the (KJ-J) dimensional constraint surface 2. The shortest weight vector from the origin
to the constraint surface Q is found by minimizing the norm of the weight vector | W12

subject to C'W = F. The method of Lagrange multiplicrs is utilized, and the Lagrangian is

Y=2 WIW AT (CTW-F ) (2-23)
The necessary conditions fo. optimality are
_OH _. Tw_ (2-26)
Hw—aw =" and C'W=F
Taking the gradient of the Lagrangian and setting it equal to zero yields
Wopi=-C A 221

Since W, must satisfy the constraint, we find -C'C A= F and the weight vector costate
equation is

A=—CTCY'F (2-28)
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Substituting the weight costate equation into the Cq'uuli(;n for W(,p} yiclds the vector which
we seek:

Wou=C(C'Cy'F 2-29)
This vector is identical to the vector Q in the CLMS algorithm, cquation (2-22).

Itcan casily he verified that Q is ormognnul to any vector 2 in X by cxamining the
inner product | | |

Q:=F(C'C f"c’: - (2-30)
and noting that C'z = 0 by definition.

Cunsid& the projection operation (dcfincdhin definition A‘1~6 and characterized by
propositions Al-2 and Al-3 of appendix I). A vector W may be decomposed as tﬁc sum
of one vector in £ and one vector from the orthogonal space spanned by the J lincarly
independent columns of the constraint matrix € . termed the constraint subspace . The
projection operator of interest acts as an identity operator on components within 2 and as
an annihilator operator on components in .

The matrix P in equation (2-21) can be seen to be a projection operator onto £ by

noting that

c'cpw)=cT(1-c(CTcy'ciw=0 @3

and lhcrct"nrc PWe X. Wealsonote that
(I-P\W=W-PW-C(CTCY'CTW=Qc ¥ 2-3)
We now rewnite the CLMS algorithm (20) for convenience:
Wike 1)=P [ W(k)-uv(k)X(k)]+Q (2-33)
The wrm inside the bracket is the standard LMS algorithm [23] with the desired signal

dtk)=A), and the expression y(k)X (k) is an estimate of the unconstrained negative gradient
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at time k. The CLMS algorithm thus computes the LMS estimate and projects the resulting
vector onto the subspace £ . The next weight vector W (k+1) is then formed by translating
the projected vector onto the constraint surface Q through the vector addition with Q. This

is depicted in figure 18.

3) Convergence of the CLMS algorithm: The weight vector W (k) in the CLMS
algorithm is a function of W k()) and the sequence {X (K)}. Throughout this development we
have assumed that the observation vectors X (k) are independem. We note that Frost [11]
has pointed out that this may be unnecessary and Daniell [21] has shown e-convergence
based on only asymptotic independence. Utilizing this assumption, X (k) is independent of
W (k) and the expected value of the CLMS algorithm may be written as

ELW (k+D) = P ( ELW (0] - wRec ETW (0] ) + @ @34)

From proposition A1-2 of appendix I, we may express @ as

Q= - P)wopt (2-35)
Let @(k+1) denote the difference between the mean adaptive weight vector at time k+1 and

the optimal weight vector:

Q(k+1) = E[W (k+1)] - Wop, ' (2-36)

Proposition 1I-1: Let Wep and W, be elements of Q with the difference vector
¢ =Weap— W, Thengpe Zand P =0¢.
Proof of Proposition II-1. Since Wexp , Wopr € Q, then

CTo=C"Wexp~ C'Wop=F-F=0 2-37)
and ¢ € I. By proposition Al-2 and definition A1-6 of appendix I, if ¢ € Z then Pg = ¢.

This may be shown algebraically:
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Pq>=[I—C(CTC)°'CT] P=090-0=0.

With the results from proposition II-1, we may rewrite the iterative difference process

@ (k+1)= P (E[W (k)] — uRxx ELW (k)] ) + [ 1= P 1Wop1 — Wop, - (2-38)
=Pok)-uPRux @k) =[[-uPRuxPlok) =[I-uPRuP1*'9(0) (2-39)
where we have used the fact that, from equations (2-16) and (2-21), PR W, = 0.

The matrix P R..P is the correlation matrix of the projected observations. It is the

non-zero eigenvalues of this matrix which determine both the convergence rate of the CLMS

algorithm and the performance of its steady-state with respect to the optimum. This

projected correlation matrix P RP € R"*" and is symmetric. Hence, it is diagonalizable

into n orthogonal eigenvectors.

Proposition II-2; m of the n eigenvectors of the matrix P R.P are outside of the
subspace X and have zero eigenvalues. The remaining n-m eigenvectors have non-zero
eigenvalues and lie within Z. | ‘

Proof of Proposition II-2: The matrices P=1—-C ( €'C )"'C” and C have full rank.
Therefore, C has m columns of linearly independent vectors. It is evident that the product
C'PR,.P=0since P (R,, P ) € X. Thus, m»columns of C areeigenvectors of P R,.P with

zero eigenvalues.

The columns of C are orthogonal to Z. Therefore, the remaining (n-m) eigenvectors
must be in £. From proposition II-2, if ¢ € X then P ¢ = ¢. Thus, if v; is an eigenvector of
PR,.Pin X, then

VPR Pvi=vRuvi>0 (2-40)
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furthermore, if o, is an eigenvalue corresponding to v; € Z, then PR, Py, = 6, v; and
viPRPvi =0, v,'Tv,- =G (2-41)
We now consider the relationship between the eigenvalues of the constrained system

and those of the unconstrained correlation matrix. We continue the notation used to denote

the (n-m) eigenvalues of P R..P as o; and will denote the n non-zero eigenvalues of R, as

Ai. The well known result, generally referred to as Rayleigh’s Theorem [22] states:

Amin < Gmin < i S Gmax < Amax (242)
The difference vector ¢(0), defined in the previous section, lies entirely within Z and
may therefore be considered as a linear combination of the eigenvectors v; which correspond
- i;\ to the (n-m) non-trivial eigenvalues of P R..P . Thus,
e o+ =[I-wPRPI" v =[1-nail"y @43)

The convergence along any eigenvector v; is then geometric with ratio [1 - po;} and

associated time constant

-1 (2-44)

%= In(1-po)

if poi << 1, then S - L and it becomes evident that if y is chosen so that
. In(1-poi)  uo;
osus—L @49
Omax

then the norm of the difference vector is bounded between two monotonically decreasing
geometric progressions

[1-p0ma 11 QO <1 @+ < (1 - ominl™ 1 @(O)] (2-46)
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Theréfore. if the initial difference is finite, then E[W ] converges to the optimum with the

time constants for the geonietric ratio given in equation (2-44) above. That is to say, the

weight vector converges in the sense that

* liml E{W(k) - Wop ]l =0 47

k—yoo
The operation of the CLMS algorithr in a (juasi-stationary environment is néw
considered. The algorithm step size p is assumed to remain constant during this
development. The weight vector adaptation results in a non-zero variance about its optimal
valﬁe. This adds an additional cost, termed 'misadjustment” by Widrow [14]. This

dimensionless quantity, denoted M(p), is a measure of how closely the algorithm approaches

the optimal performance.

2 2 2-48
L (Wwxw) 1- £t (Whi X)) ) @48
§)=1m 2
420 EL(Win X®) ]
Frost [11] has shown that the steady-state misadjustment may be bounded by
N trace (PRx.P) B trace (PRx.P) (2-49)
2 SMws,

1 -%[ trace (PRxxP) + 20min} 1- }25[ trace (PRxxP) + 20max]

Thus, M(pn) can be made arbitrarily close to zero by choosing a small step size. The

fundamental trade off is cost performance at the expense of increased convergence time.

B. Partitioned Form C ined P

The algorithm for the direct form TDL structure clearly shows two discernible
events taking place. The first event is the adaptive process which determines the LMS
solution for the adaptivity. The second event is the enforcement of the constraint each

iteration, which is both deterministic and decided upon before implementation. This




Figure 19 Partitioned CLMS Processor

algorithm partitioning was also depicted in the preceding geometrical interpretation and
figure 18. |

Noting this separation in the algorithm, it would seem reasonable that one could
change the form of the processor in order to partition the two aforementioned events. This
is the approach that was taken by Griffiths [15] and now explained. The adaptive section
of the processor would operate in the subspace  and the non-adaptive section would perform
the translation to the subspace Q, satisfying the constraint. Thus, this structure separates
the conventional beamformer from the adaptive processor. As shown in figure 19, the
partitioned processor described above is implemented so that

CW.=F (2-50)
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C'Wpe=0 (2-51)

where Wpr represents the adaptive weights in a2 manner analogous to section ILA.1 and
W, is a conventional non-adaptive beamforming filter. Equation (2-51) ensures that the
desired signal is eliminated from the adaptive processor input. Equations (2-50) and (2-51)

can be seen to satisfy equation (2-4) by considering the global partitioned weight vector

W ' (2-52)
W3= —_—
Wer
and noting that
F (2-53)
C'Wy=|—
0

The partitioned processor shown in figure 19 thus utilizes the CLMS algorithm:

min W/ R Wer (2-54)

Wpr

subject to the constraint

C"Wpr=0 (2-55)

The optimal adaptive weight vector Wpr,,, for the partitioned processor is now derived.

The output of the processor is

y=(WE- Wk | (2-56)
and the Lagrangian for this system is
H = (WF - Whe ) Rex (WE = Whe)+ AT (€7 W ) @57
The necessary conditions for optimality are
(2-58)

Hw,p=a—a,% =0 and CTWpr=0
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Taking the gradient of the Lagrangian
Hipe =R s (We - “’PF) +Cr=0 ’ (2-59)
and solving for the optimal weight vector yiclds‘
WpFop= W—RG'C A ‘ (2-60)
Since Wopr must satisfy the constraint
c’(wc- - C x):o (2-61)
we find that the optimal value of the Lagrange multiplier is
A=[CTR: C I W, | 2-62)
- and the optimal weight vector may be written as C

Werop = We-R3'C [CTRGIC 17'CTW, | (2-63)

which can be seen to be equivalent to equation (2-16) by considering (Wc - pr,,p,} Itis
apparent that the array transient response is unchanged from that of ihe direct form due to

the partitioned form’s dependence upon the eigenvalues of the same matrix PR..P. Since
: |

the partitioned processor has the same transient behavior and the optimal weight vector for

the processor is equivalent to the direct form, the two processors have identical performance.

The GSC form was first introduced by Applebaum and Chapman [12] for
narrowband signals in a radar context. The derivation in this section will follow the
extensions made by Griffiths [13] for wideband signals. The iterative equation (2-24) may
be partitioned into a scalar nonadaptive equation and a matrix adaptive equation. To derive
this particular form, we will begin with the direct form processor CLMS algorithm, and

partition it in a manner which will utilize a matrix filter to ensure that the adaptive processor
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operates on the homogenecus constraint subspace . This means tha the processor does

not require the constraint C' W = 0 for the adaptive section. In other words, the constrained

processor operates with an unconstrained adaptive algorithm.

We note that equation (2-24) can be written for the I-th column as

W(ks =W +uy (D[ XT(k=D11-X(k=-D1-L(WTy11-51) @S9

We proceed by defining a K-dimensional constraint vector W, f.or’the MVDR processor
such that

_1 o (2-65)
and a (K-1) x J dimensional signal blocking matrix Ws composed of linearly independent

rows r (i ) such that
rf(i)1=0 i=1L.k-] | | (2-66)

Then we introduce the invertible transformation matrix T such that

| ¥ . (-67)
%)
where the KJ-J x KJ matrix W; and the KJ x 1 vector Wc are given by
T (W: 0 0 0] LA (2-68)
0 W, 0 .. 0 0
0 oW, ... 0 0
Wx'—‘- N . . WC=
000 ...w 0]
and finally, from (2-65) and (2-66) we note
1 (2-69)
0
Ti1=|.
0
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Multiplying the stockastic CLMS algorithm by the transformation matrix T, using
equation (2-69), and defining |

a (k)= W Wor (k) 2-70)

B (k)=-W, Wpr (k) . @)

we find that equation (2-64) can be exprcssed as

. .72
a(k+1)] [a(hk) %x’n wix | | |Wirtk)1-4 @
el bl B R 'S A€ 911 RN G (S | El J—

B(k+1) lB(k) 0 -W; X 0

Substituting equations (2-65) and (2-4) into equation (2-72) yields te nonadaptive

scalar equation |
a(k+1l)=a(k) (2-73)
and the adaptive matrix equation
B(k+1)=B(k)+uy(k)X;:(k) ' (2-74)
Equation (2-74) is the standard unconstrained LMS algorithm and X 5 is defined by

R (k)=W, X (k) or Xi(k)=W,X{(k-1A) (2-75)

- where Xi(k-IA) was defined in equation (1-26).

As long as the nonadaptive scalar weights a ( k) satisfy
a(k)=s (2-76)
then equations (2-73) and (2-74) define the stuchastic CLMS algorithm with the constraint
explicitly separated from the adaptive beamformer. This is the Generalized Sidelobe
Canceller (GSC) form of the CLMS array, and is shown in figure 20, where for the directional

constraint of interest K = K-1.
The LMS algorithm in equation (2-74) is a direct function of the CLMS algorithm

weight vector in equations (2-24) and (2-64). In other words, equation (2-74) presents a
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method of representing the CLMS algorithm with respect to the GSC form. In general, the
- GSC algorithm weights are not a function of the CLMS algorithm, but are updated by
equation (2-74) such that the W; in figure 20 are not constrained
W(k)=Wpr (k) -1
and the nonadaptive weights shown satisfy equation (2-76).
The question of interest is the behavior of the GSC form as a function of the s‘ignal
-/ly P blocking matrix Ws and the unconstrained weight vectof Wesc (k) = W (k). Itis shown in
appendix II that the optimal weight vector Wcsc,,p, is equivalent to the other two forms ’
considered when equations (2-65) and (2-66) are satisfied, ie:

A e
WGSCO_M = (Ws Rx W;’) ! Wx R,,W = WPant = WDI-'DP‘ 2-78)
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This leads to tile conclusion that as long as the signal blocking matrix forces the adaptive
processor to function in the subspace X (blocks the look-direction signal) and the
nonadaptive weights enforce the constraint, then the steady-state solution is equivalent
across all three processor forms. It should be noted that this equivalent steady-state response
is achieved through not only an unconstrained adaptation, but also with a reduced order
adaptive processor. For the directional constraint of interest, the processor need only operate
on the transformed cbservation vector ,Qs of dimension (KJ-J) x 1. The transient bchavior
of the GSC form, however, may or may not be identical.

Thus, the GSC can provide filtering operations which are either identical or different
to those of the CLMS array depending on the structure Sf the signal blocking matrix Ws and
the constraint vector W . If the linearly independent rows of Wy satisfy equation (2-66),
are orthogonal |

rTiyr(j)=0, i%j 2-79)
and W, satisfies equation (2-65), then the stochastic CLMS processor is obtained, as detailed
in appendix IT and explained from a geometrical point of view below. Furthermore, if Ws
satisfies equation (2-66) but not equation (2-79) and/or W, does not satisfy equation (2-65),
then a processor is formed which will have the same stcady-state performance, but different
transient trajectories.

The fact that the GSC form reduces to the CLMS form if equation (2-79) is enforced
is evident by considering the geometrical interpretation of section ILA.2. With a fixed W,
it is clear that the orthogonality condition for the rows of Wj is equivalent to decomposing
the GSC such that

W.=0 280
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e

W Wosc (k) =-P{ Wasc (k) +py (k)X (k)] | 2-81)

where P and Q are defined in equations (2-21) and (2-22), and the geometrical relationship

‘was shown in ﬁgure 18. The vector Wc = Q can not be changed in order to keep the desired

MVDR processor. Since Q spans ‘¥, in our search for quicker .tra'nsient behavior we are

restricted to cxamine relationships which are non-orthogonal combinations of Q@ with
W, € X. The weight vector at each iteration must still be an element of Q.

As an example, assume a lipear array with K=J=4 and W, satisfying equation (2-65).

“Then if we chovse a Ws, such that?it is composed of mutually orthogonal row vectors which

are binary Walsh functions[24]

1 -t 1 -1 (2-82)
w" = l 1 "'1 ‘1 ‘
1 -1 -1 1 :

|
A .
then we obtain a processor idemicj:al to the CLMS direct form. By contrast, if we choose a
i
non-orthogonal Ws, such that it forms the sum and difference of the adjacent channels
1 -1 0 0 (2-83)
Wo=[0 1 -1 0
. 0 0 1 -1 '
[

then we obtain the pfocessor desc}ibed by Applebaum and Chapman [12].

The capability of finding a Ws which implements a rectangular quadratic
transformation Rys = Ws Rux llr\VsT such that the resulting matrix has a smaller eigenvalue
spread than the original correlation matrix PRyyP is intriguing. This bcapability means that
the GSC adaptive processor may converge faster than the CLMS form. The quickest
convergence possible would be realized if the rectangular quadrafic transformation
equalized the eigenvalues of the input correlation matrix. However, due to the form of

W,,. given in equation (2-68), it is not in general possible to determine a W which satisfies
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the requirement of equation (2-66) and equalizes the cigenvalues of the resulting matrix
Ry;s. The best that can be achieved is to find a signal blocking matrix Wy which causcs the
smallest eigenvalue spread of Ryxs. The dilemma is that even this requifes unavailable a
priori information about the original correlation matrix itself. Thus, while one may
guarantee identical transient behavior for the GSC and the direct form processor, there is no
determiﬁistic methed available to ensure the capability of a better dynamic response.

The utility of the GSC form, however, lies in the fact that the matrix filter partitio-nin g
permits the use of other adaptive structures to replace the tapped-delay-line unconstrained
processor and reduces both the dimensionality of the adaptive weight vector and the
algorithmic complexity. It is precisely these capabilities which the reméinder of this

research will concentrate on, with the goal of reducing the adaptive processor convergence
time. |
D.N lization of the Sten Size Gai

The CLMS and the LMS algorithms used in the direct form and GSC form arrays,
respectively, utilize a constant step size gain denoted p. This gain is dependent upon the
input signal power as described in section II.A.3, where the CLMS misadjustment was
derived. This dependence is uﬂiesirable seeing as p remains constant while the signal power
changes over time. This undesirable dependency may also be seen by considering an
increase As in the input signal. For the LMS algorithm, this is equivalent to increasing the
gain from p to u(As)z; which is the same increase observed in the eigenvalues of the signal

correlation matrix. If the signal power grows too la: ge the adaptation algorithm may become

unstable.
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One method of solving the problem deseribed above is o implement a time varying

step size gain. The use of ume-vanang step sizes for the LMS algorithm has been considered
by many authors tor the narrow band single channel TDL adaptive filter {50.51,52.53]. The
Jevelopmentan this seetior i.u\ll;\\\h the development in Honig and Messerschmitt’ | S3] with
the unhization of ditferent parameters and extensions to thé multichannel wideband case of
interest. The step-size should e numwli)cd o the input signal power at cach iteration.
[hus, it 1s desirable o change the CLMS and LMS algorithms in equations (2-24) and (2-74)
t the t‘orm
Worw ‘k"i» = I’;“}'m\’ k) - uik) v(k) X(k)] +Q -8
Wi kel = Woys thy « pk) vib) Xsihy - (2-8%)
“hcr§ pik) s the atorementioned time-varying \lgp size. The magnitude of the step size
~cach steration will be approximately the same on average if at cach sample it is normalized
by an estimate of the input signal power. For the [-th TDL, this may be expressed as

Wik = (2:86)
al_z (‘)

uh;;rc 6.5 (k) is a measure of the power content of the received signal at the /-th channcel
duning the &-rh iteration and ais a scalar.,

One choiee for forming the power estimate is through the use of a single pole
low-pass filter. This iy equivalent to using an exponentially weighted time average of the
input signal power above cach tap of the channel, and may be writien as

CRTTR A T TR S Y (2-87)

tor the 1-th channel. The selection of {3 such that O<B<l controls the bandwidth of the filter

and the resulung power averaging time. Leta = |, then the selection of f such that f = 1
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(k) 1-8

Ty 2-88
umE{_l_]_E[X (k) X(k)] (2-88)

koo

We now consider setting o = 1 ~ . This is equivalent to letting

(2-89)
E [p(k)) = ——
E [6(k)]

which is rcasonable as long as (1 -f) is small cnough to smooth out the statistical

fluctuations in the step size so that p(k) becomes virtually independent of the observation

data X(k). If the step size at k=0 is initialized at p(0) = XJT(IO_;E’(LOE , then thé expected value

of the step size will approximate the expected value of %—D for all k. The time constant
Ox (k)

in equation (2-44) will become

N (2-90)
z Ai

t,_E[XT(k)X(k)] _ =

TTO-BA N(A-P) M

- . Aay . . .
which shows the proportionality to the ratio —=. Therefore, a change ir. the input signal

i
variance causes a much less dramatic change in the convergence speed and the

misadjustment is reduced.
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Figure 21 Signal Spectrum

Table 1 Signal Characteristics -
SOURCE o POWER CENTER BANDWIDTH
: FREQUENCY

desired signal 0° 0.1 03/ 0.1

jammer #1 45° 1.0 0.2/ 0.05

jammer #2 -60°. 1.0 04f 0.07

white noise per tap N/A 0.1 N/A N/A

E.Example

The example considered in this section is based on a linea{ array geometry and is
similar to that presented by Frost [11]. The array is composed of four sensors equispaced
at half-wavelength. Each tapped-delay-line filter has four taps., The tap spacing A
corresponds to a frequency of f, = 1.0 (f, = 1 defines a frequency off 1/A Hz). The signal
environment is characterized by one desired signal and two active jammers. The signals are
assumed to emanate from sources in the far field of the array and impinging from directions

04, 0,,,and 0,,. The propagation medium is assumed to be linear and non-dispersive. The
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Figure 22 Optimal Frequency Rosponse

look-direction signal and noises are assumed to be statistically uncorrelated with the non
look-direction signals, explicitly ruling out multipath. Thé signal environment is described
in table 1 and figﬁre 21. The power spectralv density depicted in figure 21 is a plot of
normalized frequency versus power in dB.

The vector of look-direction filter coefficients F is designed to provide a
distortionless response. This desired response in combination With our directional constraint
yields the aforementioned linearly constrained minimum variance distortionless response
(MVDR) processor. The optimal weight vector given by equation (2-16) produces the
frequency response shown in figure 22. This figure is actually three steady state plots of
normalized frequency versus power gain superimposed upon one another. The firsi plot
depicts the distortionless look direction frequency response, while the second and third plots

are the frequency responses in the directions of jammer 1 and jammer 2, respectively.
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Thé ensemble characteristics with the known correlation matrix of the direct form
and GSC form TDL structure arc now examined. This type of computer investigation is
termed an analysis model, as opposed to a simulalion which will be addressed later. The
magnitude of the step size determines the speed of convergence and the steady state
mean-square error of the CLMS angi LMS algorithms. The upper bound, giyen in cquations
(2-45) and (1-50), require a priori knowledge of the data correlation matrix. A step size
which is near the upper bound may lead to overShoot with data fluctuations and the
mean-square error increases proportionally with the step size magnitude. A step size which
is too small will increase the amount of time required to conQergence. For this example, the

magnitude of the step size is taken to be
1 - B | @-91)
10 trace(R)

where R is the relevant corrclation‘matrix. I‘t is noted that this step size is the value
recommended by Wid-ow [20, p. 106]. |

Figure 23 shows the ensemble average weight transients resulting from iteratively
applying the CLMS algorithm in equation (2-20). Figure 24 depicts the ensemble meaﬁ
square error or learning curves. Since the LMS algorithm’s desired reference signal d(k) is
equal to zero in the constrained algorithms, the mean-square‘error is equivalent to the
ensemble output power; that is, E[£2] = E[(d(k) - y(k))Z] = E[yz(k)]. The GSC form requires
the choice of signal blocking matrix be made for further analysis. The choice of W, defined
in equation (2-82) yields a performance identical to that of the direct form, and is therefore
not presented. Figures 25 and 26 present the ensemble weight transients and output power

for the signal blocking matrix Wy, defined in equation (2-83). For this example, the
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eigenvalues of the observation correlation matrix R,, range from 0.100 to 10.056. The

eigenvalue spread of the direct form quadratic matrix function PR,.P is 75.447. The

eigenvalue spread of the GSC quadratic matrix function WJZRXXWSTZ is 57.8019, depicting
the situation where the GSC pérformance will exceed that of the direct form.

The simulation model analyzes the actual behavior of the adap.tive processor. This
is accomplished through generating all propagating signals and simulating the Sensor noise
‘at eachelement. The signals impinge upon the array as they would in a true deployed system,
and the statistics are data driven. This differs from the analysis model, where simply an
investigation and iteration of equations given the correlation matrix is perfdrmed.

The sﬁnulation of the tapped-delay-line structure for both the direct form and CSC
form is now considered. The propagating signals are modeled as zero-mean stochastic -
processes with Gaussian distributions. The signals are filtered to provide the spectral and
spatial characteristics described in table 1 and figure 21. The consiant step size simulations
are based on an LMS gain as described in equation (2-91). The normalized step size ‘
simulations are formulated as described in section D of this chapter.

The simulation executed one hw.Jred adaptations over a one hundred independent
realizations of the input process. The same observation process at the se 1sor iinputs were
used for each form to provide a meaningful comparison. The direct form constant step size
mean weight vector trajectories, encemble averaged output power and frequency response
evaluated at the mean value of Wpr(101) are displayed for this realization in figures 27, 28
and 29. The analogous plots for the GSC are presented in figures 30,31 and 32.

The normalized step size simulations are presented for the same observation process

realization generated above. It is noted that the ensemble statistics are not available due to
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the algorithm’s new dependency upon the data variance. Approximations to the ensemble
performance are made over one hundred adaptations of the observation process realizations.

The time-vafying LMS algorithm begins with an initial condition of the input signal
variance, which must be large for fast convergence and subsequently decrease in magnitude
for minimum steady state mean-square error. In accordance with the earlier discussion on
convergence, too small of an initial variance estimate leads to a large initial step size and a
corresponding initial overshoot. A value of the initial variance estimate which yields similar
performance to that exhibited by the fixed step size of equation (2-91) has been

experimentally determined to be

2xTx @92
J trace(R)

0k40) =

where R is the relevant correlation matrix for the form under consideration.
The plots of weight vector dynamics, temporally averaged learning curves and
frequency responses are displayed in figures 33, 34 and 35 for the direct form; figures 36,
37 and 38 for the GSC Wy, form. The learning curves are roughly equivalent to the constant

gain simulations. The frequency response graphs depict that the ability to adjust the step

size independently for each element based upon the input variance provides more accurate

placement of the nulls as well as deeper attenuation. The problém of determining a step

size gain based upon misadjustment is relieved by the step size normalization.
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F. Conclusions

The GSC form and the direct form TDL structure adaptive array sensor have identical
dynamic behavior if the LMS and CLMS step sizes are constants which provide the same
level of misadjustment, the GSC form constraint enforced through the conventional
beamforming matrix W, is equivalent to that of the direct form algorithmic constraint and
the GSC form signal blocking matrix W; is composed of orthogonal rows which map the
constraint nullspace. Since the emphasis in the examples was a MVDR array which provides
a distortionless look direction response, the constraint was consistent across all forms and
examples. The difficulty in choosing a signal blocking matrix composed of nonorthogonal
rows which would consistently provide a better dynamic behavior was discussed at the end
of section ILC. It was found that the GSC form signal blocking matrix implementing an
adjacent element subtraction led to a quicker convergence for the signal and array geometry
presented in the examples of this section.

The LMS algorithm with a time-varying step size presents two benefits which are
of importance in this study. First, the choice of step size selection is simplified due to its
update as a function of input signal variance (or equivalently, the eigenvalues of the input
prdcess Eorrelation matrix). Second, and most important, this normalization of the step size
leads to a reduction in the dependency between the speed of convergence and the
eigenstructure of the relevant correlation matrix. This is realized due to the fact that the
algorithm can now update cach weight independently with separately valued time-varying
step sizes. Thus, each mode of the algorithm can adapt at its own speed. The correlation

matrices which then determine the speed of convergence are then given by P Qpr(k) R, P
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and WS Qesc(k) Ry WST where Qr(k) is a diagonal matrix of the proper dimension for form

F whose elements at time k are given by the individual step sizes présented in equations
(2-86) and (2-87). For the example presented, the eigenvalue spread of the normalized
algorithms and that of the standard algorithm were nearly identical. This is believed to be

due to the modest eigenvalue spread produced by this example’s geometry.
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lil. CONSTRAINED PROCESSORS WITH CRTHOGONAL FILTER STRUCTURE

This chapter investigates the performance of the GSC form linearly constrained
wideband adaptive array sensor with the adaptive processor replaced by an orthogonal filter
structure. The motivation for utilizing an orthogonal filter realization of the adaptive
processor is that we desire to obtain a new sct of data vectors which exhibit minimum
correlation to provide as the input to the adaptive filter.

Consider the GSC form array with a single distortionless constraint as shown in
figure 20 of the last chapter. The operations considered in this chapter are realized by
transforming the data present on each tap in the figure prior to weighting. This
delay-and-transform operation is conveniently represented, in general, by the transformation

matrix Q. This structure is depicted in figure 39. It will be seen that the elements of the

Figure 39 Transtorm Domain GSC Processor Structure
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transformation matrix may be adaptive or fixed. The goal of this transformation, as stated

initially, is to provide a less correlated input Z(k) to the adaptive weight vector Wesc(k).

This chapter will first consider the‘;:ase of a fixed orthogonal uansform struc.lure in
section LA, where the Discrete Fourier Transform (DFI') and the Discrete Cosine
Transform (DCT) with a normalized step size will be extended to the multichannel case of
interest. Linear prediction will be revicWed in section IIL.B tb provide the foundation for
the derivation of thé lattice filter structure in section IILC. The converged lattice structure
wiil be related to the Gram-Schmidt orthogonalization process, and the multichannel
adaptive lattice structure will then be exaniined as a replacement for the TDL processor.
The Gram-Schmidt orthogonal structure will then be derived directly in section IILD, and
the characteristics of this strﬁcture in the GSC form processor will be examined. Simulations
in section I1L.E will then be used to compare the performance of these structures

A Fixed Ontl | Transform Domain S .

Very early in the history of adaptive array researéﬁ many investigators examined
frequency domain LMS filters [31,35,36]. The frequency domain ﬁ:anSf ormation is usuélly
implemented with Q beiﬁg an;n;ezll;le ‘matrix compdsed of the DFT ortheDCT
coefficients which operate in an identical manner upon each TDL. The freqhency domain
has an intuitive appeal as a method of improving the performance of wideband adaptive
arrays. The transformation from the temporal domain to the frequency domain results in
frequency subbanding, in effect reducing the wideband problem to discrete frequency bins.
The initia.l research in this arca was limited to the analysis of the LMS algorithm with a

constant step size. Compton [29] then published a report which showed that the rcqucncy




domain structure performance was identical to that of the tapped-delay-line processor, again

utilizing a fixed step size in the LMS algorithm. Subsequently, many other researchers
began examining the use of tranSform domain adaptive filtering for narrowband single
channel applications wrich considered the use of time-varying LMS step sizes
[28,30,40,41,42,43,44,45,46,47].

Section IILA.1 will present the equivalence of invertible linear transforms for
completeness. This equivalence directly applies to the DFT and PCT processors with a
constant step size and demonstrates that the rcsultiﬁ’g array transient and steady-state
behavior is unchanged by the transformation. Section ?III.A.Z will then be concerned with
the main contribution of this section, the wideband mul&channel extension of the transform
domain filtering research of Narayan [28], Lee [30], Ciark [40] and Jenkins [42]. Section
II1.A.3 will present the DCT, and section I11.A .4 willlconsider the convergence of these

transform domain algorithms.

1) The DFT Transf.. wa: Inorder to facilitate thé following development, we bricfly
return to the TDL structure GSC in order to abbrevi;lte notation. Define the quadratic
correlation matrix function and the quiescent response vector as

R, = W.R W 3-1)
Rea= W,R W, 32
Utilizing this notation, the optimal GSC weight vector in equation (2-78) may be written in
a form similar to that of the Wiener-Hopf equation which was introduced in equation (1-18)
Wopt = R, Rxd (3-3)

The optimal value of the GSC lower path output can be written as

Yoo = ngu? = ,Q ;T Wop: (34
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Now, extending the derivation of Compton [29], consider the GSC form array with

an invertible transform @ introduced after the signal blocking matrix and before the adaptive
processor. We note that any reversible operation can not affect the performance of the array.

This situation is clear by considering the new data vector Z, which becomes the input to the

adaptive processor, where

Ik =0%k% - (3-5)

The transform domain optimai weight vector is given .by'
Wou = QRO QR (3-6)
and the output of the transform domain structure’s lower path is

Yeegk) = 2T Wg, G-D

~Xg"wo,,

= XT07(OR,,0") ' QR.

= 8RR

=y ‘opl(k)
In fact, it is easily shown that optimal weight vector of the two structures are related by

Wo=107'W 3-8)

Hence, the transform domain GSC processor with an invertible transform and the TDL GSC
(Q =) both cunverge to the Wiener-Hopf solution.

Consider the symmetrical DFT which is implemented upon the signals present at

each channel of the blocking matrix output. For the I-th channel,

7 - (2!!1»1-1 Nn=1 2) (3-9)
Zn=Y Xe / =LK n=1J
m=1
or, equivalently, for the stacked (K-1)xJ dimensional data vector X at time k
Zk) = Qorr Rk) (3-10)




and Qprr is simply the rank (K-1)xJ matrix of exponential coefficients which realize

equation (3-9). This algorithm has the additional benefit of not chuiring an inverse
transform to obtain the tim > domair output {24].

Due to the symmetry of the DFT ‘matrix, we may write equation (3-8) as

Woprr= QbrrW G-1D

and the weight vector behind each element is simply thg inverse DFT of the TDL structure
weight vector.

The transform relation of equation (3-11) depicts that the steady state value of the
DFT and the TDL structure are the same. Following Compton [29], we now show through
the analysis of the correlation matrix eigenstructure tha‘t the transient behavior of the twb
arrays are also identical for a fixed step size. For the present time, we will be concerned
solely with the frequency domain transform, and therefore the subscript DFT will be

suppressed.

Define the transform domain corrclation matrix as
Ry = QR,‘QT - 61D
where the operator (-) denotes the complex conjugate. Since Ry, and Ry are both assumed
to be pusitive definite and Hermitian, Ry, has a complete set of orthonormal eigenvectors
whose corresponding eigenvalues are real and positive. Denote the i-th eigenvalue of Ry,

as A and the i-th eigenvector as ¢;. Then the orthonormal condition may be explicitly written

as
9=5; (3-13)

We proceed by defining the transform eigenvector
¢:i=VIQ g (3-14)
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and note that

olo,=el T VI Q" (3-15)
~ Utilizing the symmetry of the DFT and the fact that the transformation matrix is realized in

a block diagonal form due to the same transform taking place on each element, we f ind

o =%Q (3-16)
Y = rl’_ 0 3-17
and equation (3-15) becomes
olo~Jol L o0 0= 3, (3-18)
Now, consider the eigenvector ecjuation
Ry, @i = Mii . 3-19)
Substituting equation (3-14) into (3-19) and multiplying by Q"' yields
Q“k,,Q @i = Aigz, (3-20)
and using the symmetry of the DFT, equations (3-16) and (3—20) can be written as
(@R 0N)9:, = J Mgy 321
so that it is evident that
Ru9:=J )i (3-22)

Then each eigenvalue of R;; is simply J times the corresponding eigenvalue of Ry,, and we
conclude that the eigenvalue spread for the frequency domain structure and the TDL

structure GSC are identical.

2) Ibe DFT Frequency Domain Structure with Subband Normalization: Both

Compton [29] and Lee and Un [30] have examined the performance of the DFT algorithm
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pfesemed in equation (3-21). Compton concluded that the TDL and DFT structures always
perform identically in his analysis of singic and multiple channel adaptive filters. His work,
however, did not consider normalization of the adaptive step size. Lee and Un realized the
possibility of achieving better convergence propérties through the normalization of the step
size, as have Narayan et al. [28]. However, both of the latter authors restricted their analysis
to single channel filters and hence, were not able to realize the normalization conditions for
the adaptive algorithm step size which is now presented to yield speed of convergence
improvement in the adaptive array sensor problem. Following the notation of Narayan,vwe
define these conditions and present a method of multichannel variance averaging which
results in better dynamic behavior while achieving the same steady siate Wiener solution.

Consider the normalized step size for the unconstrained LMS algorithm

W(k+1) = W(k) + p(k)y(h)Xs(k) (3-23)

where at time k
W) =332 629
O—\'J(k)

is a diagonal matrix composed of the averaged signal variances. We note that the averaging
operation for the TDL structure was a multichannel extension of the only one which can be

considered in the single channel case; averaging over the channel. Thus, for the n-th channel

8200 =p 82, k-1n+ =BT ox, (3-25)

The steady state convergence of the normalized step size LMS algorithm and the variance
estimate of equations (3-24) and (3-25) were considered in section D of chapter I1.
It would seem reasonable to conclude that better transient behavior would occur

when the weights were able to adapt in each frequency bin through a normalized step size
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in which the variance was averaged over the power present in that frequency bin. An

algorithm which accomplishes this utilizes the estimate

Hek) = %E (3-26)
Sy ‘ _
CAQENEACSE %}%Z Z (k) 24,0 (3-27)
and the weight state update
Worr(k+1) = Worr(k) + (k) y(k) Z(k) (3.28)

‘where f, is the n-th fifequency bin.

3) Ih.e_st.cmtc_Cgsmc_’Imnsfnnn. The DCT has the computational advantage of
using only real numjbers to provide a transform of the input data. Further, this transform
was chosen for com:parisoﬁ to the DFT since recent articles in the literature v[24, 28,44)
reported that the narriowband single channel DCT adaptive filter provided bet'ter results than

the DFT and other érthogonal transform filters for a class of data used in speech related

applications. f

The DCT orthogonal transform for the /-th channel is given by
[

J (3-29)
i—f 3 .., =1 n=1J
Zin= _;“1 '
2% X co{ﬂ@%MJ 12K =1
me]
which is represented at time k by the (K-1)xJ dimensional vector
Z(k) = @per Xk (3-30)

and Qpcris simply the rank (K-1)xJ matrix of real coefficients which realize equation (3-29).

4) The Transform Domain Convergence: The - eed of convergence of the weight

vector Wprr(k) is a function of the eigenvalue spread of the correlation matrix
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RR=p[0OR, Q"] (3-31)

We now assume without any loss of generality that the observation process variance is unity.

Since the trace of a matrix is thc sum of its spectrum, for any square matrix R we can say

AR S trace(R) (3-32)

Similarly, the determinant of a matrix is the product of its spectrum. For any positive definite
hermitian matrix whose rank is greater than two, it can be shown 28] that

ARy 2 GEU(P) (3-33)

Therefore, an upper bound for the eigenvalue spread can be expressed as

_ trabegRl (3-34)
Ttk = det(R) v

From equation (3-31), the trace and determinant are expanded as
trace(u Ry;) = trace(Ry,) = KJ (3-35)
det(s R;;) = det(p)det(R;,) : (3-36)

and from equation (3-34), the upper bound is found to be

K1 (3-37)
det() det(Re) ~ detg) | k%)

I(u Rz) =

Since the input process variance was assumed to be unity, the determinant of p will be less
than or equal to unity. Thus,

F(u R;;) ST(Ry,) (3-38)
The equality condition holds when p is normalized through the averaging of element
variances and the subband normalization of eauations (3-26) through (3-28) improve the

transient characteris:ics of the sensor, as will be shown in the simulations at the end of this

chapter.
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B. Linear Predicti

The lattice structure to be derived solves the adaptive array sensor problem by

performing two optimum estimation operations jointly. The first is linear prediction, which

is used to transform the correlated inputs into a corresponding sequence of uncorrelated
backwerd error predictions. The second estimation is the familiar optimum filtering

operation which produces the estimate of the desired response, or equivalently, the array

- ouiput. We now derive the optimum forward and backward scalar linear predictors. This

development follows Haykin [27].
1) Ema:dmeaLEm_dmm The forward linear prediction problem is concerned

with predicting a future value of a stationary discrete-time stochastic process given a set of
past sample values of the process. Consider the time series {x(k), x(k-1),...x(k-J)} which is
composed of J+1 samples. The operation of linear prediction makes an estimate of x(k)

given the sample values x(k-1) through x(k-J). Let ),_, uenot~ :. !-dimensional space

spanned by {x(k-1), x(k-2),...x(k-J)} and ft\( k I -1 ) denote the predicted value or x(k) given
this set of samples. The predicted value may, in general, be expresse ! ;'s *ome function ©
of the given samples

ROV Yke1) = OCxk- DX (k=2),.. x(R-) (3-39)

and is termed linear prediction when the function © consists of a linear combination of the

samples in the form

. J (3-40)
x( lek—l )= z Won X(k — n)
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The forward prediction error equals the difference between the actual sample value
s x(k) at time k and its predicted value 9( k1Y, ). The forward prediction error is denoted

fi(k) and given by

Jitk) = x(k) = Xk | Yucy) (3-41)

where the subscript / signifies the order

The single channel forward prediction operation is depicted in figure 40. The

predictor consists of J unit-delays and J tap weights w,, =1,2,...J which are assumed to be
optimized in the mean-square sensc and fed with the respective delayed samples of the
observation process. The resultant output is the predicied value of x(k) given by equation

(3-40). Then, we may write equation {3-41) as

’ (3-42)
Jok)y = x(k) = Y, won x(k — n) :

a=]

X(k) [ X(et) [RIX02) | o Do Kiked)
L=

Wo1 Wou .
| X(k)

Figure 40 Forward Predictor
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X(k)_ Z"‘L X(k1) | Xlke2), 21 X(k-J)

|

4 /
a, [\ a a. -
10/\/& i1 . ”U\ f](k)

Figure 41 Forward Prediction Error Filter

Let a;r , n=0,1,.. J denote the tap weight values of a new TDL filter which are related to the

tap weights of the forward prediction filter as follows:
ol 1 om0 (3-43)
m- ~Won ’l=],2,....’ '
Then, equation (3-42) may be expressed as
J (3-44)
Jitky=Y ajnx(k - n)
n=0
which yiclds the filter depicted in figure 41 and is ercd a forward prediction-error filter,
2) Backward Lincar Prediction: We may also operate on the time series {x(k),
x(k-1),..x(k-J+1)} to make a prediction of the sample x(k-J). Let Xi denote the

J-dimensional space spanned by {x(k), x(k-1),..x(k-J+1)}. Then we may write

J (3-45)
k21 Xer=3 gnxtk-n+1)

(]
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to represent a linear prediction of the sample x(k-J). where g is the J-dimensional vector of

tap weights which are also assumed to be optimized in the mean-square sense. In the case
of backward prediction, the desired response is given by d(k)=x(k-J) and the backward error

equals the difference between the actual sample value x(k-J) and its predicted value

;( k=J | Xx). The backward prediction error is given by by(k) where

146
bsk) = x(k-J) - .,r\( k-J1 Xk ) ( )
and, from equation (3-45), we may write
J (3-47)
bik)=xth-J) - Zg,, xtk-n+1)
n=}

Defining the tap weights of the backward prediction-error filter in erms of the corresponding

backward predictor weights as

o |-gke1 n=0.1,..J-1 (3-43)
PMENL n=d
we may write equation (3-4) as’
J (3-49)
bik) =Y cjn Xtk = n)
n=0

where the backward predictor and backward prediction-error filter are depicted in figures
42 and 43, respectively.

Assuraing

stationarity, the correlation matrix for both the forward and backward processes may be
expressed as

R = E[xx"] (3-50)




Figure 42 Backward Predictor

XK X(et) [ralX(ke2), | [ X(ked)
C. C. C.
’ ! " b, (K)

Figure 43 Backward Prediction Error Filter
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whcre x is the J-dimensional vector composed of the observation process samples. The

cross-correlation vectors may be formulated for the forward and backward predictors as 7/

and r’, respectively:
x(k-1) x(k)| | r(=1) 3-51)
x(k-2) x(k) r(-2)

r=E =
k=D x| e

x(k) x(k=J) ry (3-52)
k-1 xtk=0) | -1

r=E
xtk-J+1) xtk=n ] | r(1)
The solutions to the forward and backward linear prediction problems are given by the

Wicener-Hopf equation as

Wo=R'r! (3-53)

g:R-l rb (3'54)

Denoting the vector formed by reversing the elements of the vector g as g%, we note from
equations (3-51), (3-52), (3-53) and (3-54) that

8”-" W,

(3-55)
and the ensemble error variances for the forward and backward predictors are identical siace
(r*)g = r))’g" and

El b, )=r0) - (r)g = n0) - Wg" = r0) - YW, = Ell fy ) (3-56)

C The Lattice Filter Stcug

We know extend the results of the previous section to the vector case of interest and

the consider the GSC data vector X derived in the last chapter. The lattice filter solves the
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prediction problem by finding orthogonal bases for the subspaces Xi-1 and Xi. The

Wiener-Hopf solution for the TDL structure oplimqm filter derived in chapter [ determined
the weighting coefficients associated with cach basis vector of the subspace of past
observations such that the prediction error was orthogonal with respect to that subspace.
The lattice structure differs in that one first constructs an orthogonal basis of the subspace
of past observations, and then projcc;s the vector Xs(k) successively onto the orthogonal
basis vectors. Consequently, since the projections are formed onto the orthogonal basis
vectors, successive stages of the lattice are decoupled. Hence, one may increase the order
of the filter by adding additional stages to the lattice while the original lower order predictor
remains optimal in the expanded structure. Thus,' it is no longer nccessary to use the
fixed-order Wiener-Hopf equation to determine the optimal filter coefficients.

1) The Optimal Lauice Eilicr: The lattice filter structure is derived by employing a
recursive formulation of the Gram-Schmidt orthogonalization procedure for orthogonal
projections. Following Strobach [26], we denote the inner product of two vectors A and
B as <A , B>. Let the (K-1) dimensional vector at stage n, E,.. be the complement of the

orthogonal projection of a vector X5 onto the subspace X denoted

Fn = X,< xn-l 3 X:(")> = x;< x’(> (3-57)

with the property

FIX(m=0 1snsJ (3-58)
then the orthogonal complement F, of the n-th order projection can be constructed
order-recursively from the orthogonal complement F,_y of the (n-1)-th order projection

using the recursion formula




X< Xn-1, Xi(n)> = X< An-2. Xs(n-1)> + Kn Xs(n)< An-2. Xi(n-1). (3-59)
or, equivalently,
Fn=Fa1 + KnXs(m)< Xn-1> (3-60)
where the (K-1) x (K-1) matrix K, is given by
(3-61)

Kn = ( Xe(n)< Xone1> XT(0)< Xno1>) ™ Xe(n)< Xonor> X< Yonor>

This can be proved by considering F,.(Kn) as a vector constructed by the linear combination

3-62
Fn(Kn)= X< x,,_1> + Kn Xs(n)< X,.-|> ( )

Then, F, is orthogonal with respect to the subspace X1 extended by the vector Xs(n) and,

equivalently, is orthogonal to Xa-1 and Xg(n)< Xn-1> if and only if the parameter Kp is
adjusted such that the Euclidcan norm of F,(Kj) attains a minimum. This follows directly
from the geometrical considerations of the Wicner-Hopf solution and leads to a least-squarcs
determination of Kp via the approach

minFI Fy o (3-63)
Ky

Substituting equation (3-62) into (3-63), taking the gradient and setting it cqual to zero gives

9F, (3-64)

e = 2X7 < Xne1> Xs(m< Xone1> + 2 Kn X1 ()< Xn-1>Xs(m)< Kone1> = 0
which yields equation (3-61) and determines Kn such that F, is orthogonal with respect to
the extended s abspace spanned by Xa-1 and Xs(n) < Xn—1>, or equivalently, with respect to

the subspace }.n.
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The vector X;(k) may be projected successively onto the components of the subspace

of past observations as follows:

Fotk) = X.(k) (3-65)
Fi(k) = X (k) <Xs(k-1)>
Fa(k) = Xu(k) <Xs(k=1) , Xs(k-2)>

Frtk) = Xi(k) <Xatk~1), Xi(k=2) , .. Xe(k=T)>

Similarly, we may successively construct an orthogonal basis of the same subspace as

Bok) = X.(k) (3-66)
Bi(k) = Xi(k—1) <X (k)> = Xs(k-1)<Bo(k)>
Ba(k) = Xs(k-2) <Xi(k) , Xs(k-1)> = Xs(k~2)<Bo(k) , B1(k)>

B = Xitk-D) <Xek)  Xok-1), K Ak-Te 1)
These nonrecursive decompositions are a consequence of applying the Gram-Schmidt
orthogonalization procedure. They can be made recursive by applying equations (3-59),
(3-60) and (3-61) to the last terms in equations (3-65) and (3-66):
Fatk) = Xo()< Xo(k-1), ... Xolk-nt1)> + KLROX (k)< Xok-1), . .. Xo(k-n+1)>  (3-67)
Ba(k) = Xs(k-n)< Xs(k=1), . . . Xo(k-n+1)> + KE(k) X (k)< Xe(k-1), . . . Xi(k-n+1)> (3-68)
Equations (3-67) and (3-68) may be expressed in termé of the 7orrﬂthogona1ized vectors

Fn-1(k) and Ba-1(k) at stage n-1, establishing the recursive laws

Fn(k) = Fa-1(k) + E(k)Bn-x(k-l) | (3-69)
Ba(k) = Ba-1(k-1) + Kn(k)F-1(K) 3-70)

with the initial condition
Fo(k) = Bo(k) = X,(k) 3-1)

From equation (3-61), the matrices Kj(k) and K3(k), termed the forward and backward

reflection coefficient matrices, respectively, can be defined as




(3-72)

Kith) =~ (Ba-ie-1) BL:Q—I))“' (Fatt B:_,<k-1))’

Ko = = (Fa-a(h) F.’H(k))" (F-10 BLak-) (3-73)

It is noted that equations (3-72) and (3-73) are identical to those presented by Griffiths [39,
equations 11a and 11b].

The preceding derivation was concerned solely with the optimal predictors. The
symmetry of the autocorrelation function showed that the optimal backward predictor
coefficients are the mirror image of the optimal forward prediction coefficients and that the
backward and forward prediction errors have the same norm (the lengths are the same, but
the error signals themselves are notj. The backward prediction errors are orthogonal to each
other and time-shifted versions of both the forward and backward prediction errors are
orthogonal. Thus, the generation of a sequence of backward prediction errors by a lattice
filter consisting of n-stages is equivalent to a Gr.um-Schmidt orthogonalization process
applied recursively to a corresponding sequence of input samples. Haykin [27, pp. 173-178]
shows that this transformation of the tap-input vector X;(k) into the backward
prediction-error vector B (k) can be accomplished through the premultiplication of the input
vector by a lower triangular matrix L (where, from the preceding section, @ = L) with 1's
alo*xg the diagonal. The non-zero elements along each row of the matrix L are defined by
the li}tap weights of the backward prediction-error filter whose order corresponds to the
posi\ion of the pertinent row in the matrix. This matrix L, where we may explicitly write

By(k) = L Xs(k) 3-749)
is nonsingular and hence. there is a one-to-one correspondence between the input vector and

the backward prediction-error vector. It is again emphasized that these properties are

applicable only to the optimal predictors.




2) The Adaptive Lattice Structure GSC Form Processor: The GSC form array

presented in Chapter II will now be examined with a data dependent adaptive lattice filter

structure replacing the TDL processor. This section follows the work of Griffiths [37,38,39]

and Lee, Chang, Cha, Kim and Youn [48]. The all zero fixed coetficient lattice filter has
the same transfer function as the lﬁxcd cocfficient TDL filter, and the scalar filter coefficient
conversions are presented clearly in Oppznheim and Schafer [25]. The lattice filter, as
dérived above, achieves the transfer function through an orthogonalization procedure. This
property of the lattice structure will be shown to be capable of providing desirable
convergence properties in the adaptive multichannel structure. The recursive form of the
lattice structure GSC is presented in figure 44.

The basic adaptive lattice‘stage represented by each box in figure 44 is shown in
figure 45. The delayed observation data sequence X(k - [) is transformed into the orthogonal
sequence By(k) through the Gram-Schmidt type relations described in enuations (3-69),

(3-70) and (3-71) and, with a slight change of notation, repeated below:

Bo(k)=Fo.(k)=X: (k) (3-75)
Bi(k)=Bi1(k=-1)- WP (k)Fi1 (k) (3-76)
Fi(k)=Fi1(k)-W/(k)Bi1(k-1) ' G-1)

These order ur cate equations relate the higher order forward and backward
prediction errors to lower order prediction errors. The signal By(k) is the backward residual
at stage /, and F(k) is the forward residual at stage /. Both of the residual vectors at time k.
are of dimension (K-1) x 1. The backward and forward reflection coefficient matﬁces
W:”(k) and W{(k) are of dimension (K-1) x (K-1) and ‘arc commonly termed partial

correlation (PARCOR) coefficicnts. The residual vectors in equations (3-76) and (3-77) are
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Figure 44 Lattice Structure GSC Form Array
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recursively updated through the use of the LMS algorithm to minimize their mean squared

norm value:

'.V/(’Hl)=W/(k)+uf(k)Bl_|(k-l)F,T(k) (3-78)

T T
W (k+1)= WP (k)+p? (k) Fia (k) BT (k) (3-79)

The optimal PARCOR coefficients are independent of thé filter order, so that the PARCOR
values in any one stage ddl not depend on those of other stages. |

The Gram-Schmidt type of orthogonalizatior which the lattice ﬁlter,siages form may
increase the speed of adaptation in subséqueni stages. vThe residual becomes increasingly
white as the order of the filter increases. The backward residuals from stage to stage are
orthogonal after the PARCOR coefficients converge, resulting in the aforementioned overall
convergence rate increase.

Consider the lattice filter structure implementatiph of the GSC shown in figure 44,
The J coefficient vectors Gy ( k) are of dimension (X-1) and utilize the LMS algorithm to

minimize the mean squared value of the /-th stage error signal €, (& ):

L (k)=ye(k)-GJ (k)Bo(k) (3-80)
&(k)=en (k)-GT (k)Bi(k) (3-81)
Gi(k+1)=Gi(k)+uf (k)& (k)Bi(k) (3-82)

The time-varying step size gains are normalized to the input signal variance, and are diagonal

matrices given by

1-8 e (3-89
o8 iy = | Bon ) + EBL B2 (4,
1 0 else
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1-8 . (3-84)

uf k)= B as,, (k-1 )+£17:‘[:—2 B-1), (k-1) "
0 ‘ else
1'..5 e - (3-85)
wb Gij) = Bo:, (ix) +517—_%l Fl-1: (k)
0 else

On:ze the PARCOR coefficients have converged, the convergence rate of the lattice
structure GSC estimation weight vector Gy(k) is no longer dependent on the eigenvalue
spread of the correlation matrix Ry,, but upon the (K-1) x (K-1) dimensional correlation
matrices of the forward and backward prediction errors. It is this property which provides
the capability for a faster convergence rate which can not be achieved with the corresponding,

TDL processor.
The process of generating the backward prediction error process from the

observation process can in general be represented by the matrix operator @ = L where

By = Liky Rk ‘ (3-86)

where the matrix L(k) is data dependent and changes with each adaptation in accordance
with equation (3-76). Once the PARCOR matrices converge, this transformation takes on
the lower diagonal form mentioned in section IIL.C.1 and the input to the conventional
weighting structure G(k) = [Go(k) Gi(k) . . . G;_l(k)]r is orthogonal due to the realization of

a Gram-Schmidt transformation.




The direct implementation of the Gram-Schmidt algorithm serves as an a}tcrhativc
method of realizing a completely orthogonal signal set to serve as the input to the adaptive
processor. The direct Gram-Schmidt orthogonal structure utilizing the LMS algorithm was
first developed by Griftiths | 39] and utilized a constant step size. This was later modified
by Lee etal. [48] o include both a tme-vanyng step sm-‘ and an ¢scalator realization, where
the unit lower tnangular ransform (UL T factonization s utilized. Following Griffiths [39],
the structure may be realized in the torm of figure 39, where the matrix @ is composed of
time-varying cocticients and the (K- 1 outputs sausty

Elomik: 2ok ]2 0 men . (3-8D

The matrix @ is lower wiangular and composed of clﬁncnu q., which may be

represented as

1 0 . . 0 (3-88)
q 1
Q = ' . . »
. . 1 0
Q-1 . Qv

The orthogonalization procedure generates the orthogonal output Zm(k) via the recursive

relationship
Y, 106) = Ry (k) (3-89)

Ymam(k) = zm(k)

m-1 ‘
(k) = RenR) = T Cmnlk) zak)  2€m < (K-1)J

n=1




Wg . ) T Wese
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Figure 46 Gram-Schmidt Structure GSC Form Array
Processor Lower Path

where the value of ¢ is chosen to minimize the local values E [)’nzw,ml»](k)] shown in figure

46. In conjunction with the method of gradient descent, we may write

ay2ak)
9 Cma(k)

: (3-90)
Cma(k+1) = Cma(k) + 1

This result may be achieved through the use of the LMS algorithm to update the

adaptive coefficients cm,»

. Cma(k+1) = cmn(K) + Pn(k) Ymna1(k) Zn(k) (3-91)

where p,(k) is the time varying step sized formed in the same manner earlier established in

this research,

athy = =B (3-54
olu(k)




The matrix Q in equation (3-88) is then given by [/ + C]‘l. where C is lower triangular with
zeros on the diagonal and elements cm,. The form of the Gram-Schmidt structure, presented
in figure 46, depicts the génerat‘on of the matrix C. The orthogonality in this structure is

complete after the convergence of the adaptive coefficients via the LMS algorithin in

equation (3-91).
Thus far in this research, we have derived and examined the TDL structure, DFT
s

and DCT ortﬁogonal transform structure, lattice structure and Gram-Schmidt orthogonal

structure GSC? form linearly constrained MVDR adaptive array.

This s%ection will be explicitly concerned with evaluating the transient behavior cf
the adaptive s:!tructures under consideration. The ensemble mean-square error for each case
will be estinglated Aand compared. The performance as a fuaction of computational
complexity vs‘/ill be examined and related to the more computationally expensive least
squares technliques, utilizing Sample Matrix Inversion (SMI) [34] as a reference.

The first example to be considered is a continuation of the the simulation from the
second chapter. A seconG example is then generated, where the array to be considered for

the simulation is composed of ten linear sensors (K=10) equispaced at half-wavelength. The

sampled signals are delayed via an FIR filter of order eight (J=8). The tap spacing in both
examples defines a frequency of fo =1 = i— There is one desired signal, in whose direction

the array is assumed to be pre-stesred. The look direction sensor noise is omitted from both

of these examples.




T

The first example examines the transient behavior of the array via simulation for the
TDL, DFT, DCT, lattice and Gram-Schmidt structures GSC Ws2 form constrained adaptive
array. The propagating signal descriptions remain unchanged from table I in the éxamplc
of Chapter II. The behavior of the structures are characterized by the estimated mean-square
error and estimated mean transform domain weight transients. The mean-square error
estimate for each structure was formed by averaging the output power of each proéessor
over two hundred independent simulations (consisting of three hundred adaptations each),
and the m.ean weight vector values were similarly averaged. Again, the same observation
data was provided to each adaptive filter stfucture during the independent simulations for
consistency.

The grapﬁs in figures 47 and 48 present the ensemble weight vector trajectories and
learning curve for the TDL structure. The graphs presented in figures 49 - 50, 51 - 52, 53
- 54 and 55 - 56 depict the analogous results for the DFT, DCT, lattice and Gram-Schmidt
structures. The benefit of using of an orthogonal transform is readily apparent by the better
mean-square error performance of all such structures compared to the TbL in figure 48.
The behavior of the time-varying orthogonal lattice and Gram-Schmidt structures appear
nearly identical, as was expected by their derivations. The DCT frequency domain structure
performs nearly as well as the time-varying orthogonal structures while the DFT stracture’s
performance is only slightly better than that of the TDL. To better depict the situation, figure
57, 58, 59 and 60 present the TDL, DFT, DCT and lattice structure’s performance (dotted

lines) versus that of the Gram-Schmidt (solid line), respectively.
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The notmalized time-varying step-sizes for each structure were initialized to the

; value ————— for both the TDL and frequency domair structures, where Z is the transform
' Z°(0)Z(0)

domain data vector (the transform is Q=I for the TDL), and to the value —2—21-6)- for both the

lattice and Gram-Schmidt structures. Whiie this conveniently removes the necessity of’
choosing an initial step size / power estimate, it does result in the minor MSE overshoot
present in the figures.

The mean-square error performance of the second example is now considered, where
the array consists of ten sensors and eight taps per sensor. The signal characte.ristics for the
ten sensor array are described in table 2. It is noted that jammer #2 is now centered at the

same frequency as the desired signal and that it has a larger bandwidth.

Table 2 Signal Characteristics
SOURCE e POWER CENTER BANDWIDTH
FREQUENCY
desired signa! 0° 0.001 031 0.1
jammer #1 -12.56° 1.0 041 0.05
jammer #2 -16.56° 5.0 0.3/ 0.1§
jammer #3 25.58° 10.0 0.2 fo 0.07

The mean-square error performance of the TDL, DFT, DCT, Lattice and
Gram-Schmidt structures are depicted in figures 61, 62, 63, 64 and 65, respectively. These
results were generated by averaging the mean-square error of two hundred independent
simulations consisting of five hundred adaptations each. The performance of the TDL, DFT,
DCT and lattice structures (dotted line) versus that of the Gram-Schmidt (solid line) are

presented in figures 66, 67, 68 and 69.
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The results are very similar to those of the last example. The performance of the

- DFT is not much better than that exhibited by the TDL structure. The DCT structure’s

performance is considerably better than the TDL. The lattice and the Gram-Schmidt
structure’s perfermance is nearly identical. It is noted that the DCT structure achieves the
same mcan-square error performance as the Gram-Schmidt after approximately two hundred

adaptations, while both the DFT and the TDL structures do not attain that level throughout

the five hundered adaptations period.

These results may be viewed as presenting a graphical representation of the

capability each structure has to provide an uncorrelated signal set to the processor. The DCT
and DFT both incorporate data-independent transforms and therefore are not able to change
in time with the input process. Tuus, given that the LMS step sizes are computed

equivalently across the different structures, the performance increase of these transform
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domain structures over the TDL is limited by the capability of the fixed transtorm to produce
a diagonal correlation matrix. The Gram-Schmidt structure is data dependent, and
continuously attempts to provide an orthogonal output based on the input process. The
lattice structure maps the input data to an orthogonal basis through independent stages, as
described in section III.C. Therefore, after the convergence of the PARCOR ‘cocfﬁcicms,‘
the lattice structure also produces a completely orthogonal output.

The computational requirements of the different structures are now compared. The
measure of computational complexity used will be the number of adaptive coefficients
réquired for the realization of each structure. Since the LMS algorithm is being used for all
structures, the number of required operations (multiplications and additions) for each
coefficient will be the same, except for the DFT, where the operations are complex. Thus,
tﬁis measure 1s reasonable and provides a comparable quantity.

| The required number of adaptive coefficients for the structures is presented in table

3. For the array used in the second example, K=10 and J=8 so that the TDL, DFT and DCT

Table 3 Computational Requirements in Terms of Adaptive Coefficients
STRUCTURE ADAPTIVE COEFFICIENTS
TDL K-DJ
Frequency Domain K-DJ
Lattice K-DI+2(K-1)?(-1)
Gram-Schmidt X-DI+HEK-DI[(K-1)J-11/2

structures required 72 coefficients, the lattice required 1,206 and the Gram-Schmidt structure
required 2,628 adaptive coefficients.

Sample matrix inversion is a weight determination approach, and Gram-Schmidt an
algorithm for solving the SMI or least squares problem [55]. Thus, the Gram-Schmidt

structure provides a means of realizing the SMI algorithm. Gerlach [56] and Youn [55]




reéemly commented on the convergence behavior of these two algorithms, and both agree
that they are numerically equivalent assuming infinite numerical accuracy. Therefore, a.
direct comparison' éan be made of the computational requirements (in terms of the number
of needed adaptive coefficients) with respect to the least squares algorithms, where the LMS

version of the Gram-Schmidt structure presented here is the lower bound in terms of required

operations.




IV. CONCLUSIONS

The purpose of this research was to investigate methods of improving the transient
response of constrained adaptive array sensor processors while simultaneously satisfying a
requirement for limited computational resources. ‘The adaptive processor using the LMS
algorithm provides the smallest computational requirements. This processor was developed
for the standard TDL structure in chapter I and investigated in terms of the constrained array
sensor problem in chapter II. It was shown that the tradeoff for computational simplicity
was a transient behavior dependency upon the eigenstructure of the correlation matrix which
described the signal and array geometry. This same problem motivated the development of
more expensive least squares techniques which led to a solution exhibiting independence of
the correlation matrix eigenstructure. Thus, the course of action undertaken in this research
was to investigate methods of improving the convergence properties of the LMS array
processor in order to gain performance similar to that of the least squares algorithms while
maintaining computational simplicity.

The development and utilization of the GSC form linearly constrained MVDR
adaptive array sensor in chapter II allowed the adaptive processor to be realized in an
unconstrained manner while the overall solution satisfied the constraint. This feature of the
GSC provided the motivation to replace the standard TDL structure processor with an
orthogonal filter structure. In chapter IIL. the DFT and DCT frequency domain structures,
the lattice structure and a direct implementation of the Gram-Schmidt structure were
investigated. The results of the simulations presented in chapter Il clearly depict the

advantages of orthogonal structures for the linearly constrained MVDR processor.




The fixed transform frequency domain structurcs have been shown to provide an
improvement in the tfansiem behavior of the édaptive array at no increase in the (K-1)J
adaptive coefficient computational requirements. However, this structure may still be
dependént upon the eigenvalue spread of the correlation matrix. Furthermore, there is noa
priori meihod of knowing which fixed transform will provide the best results for any given
observation process. In genefal, the use of the frequency domain structuies will provide
some benefit in the arrays dynamic behavior as long as subband normalization is used, and

the benefit may be great depending upon the effectiveness of the transform and the

 interference dynamic range.

The DCT structure processor provided an effective orthogonal transform which, with
the use of subband normalization, led to a transient behavior which was extremely close in
performance to that of the lattice and the Gram-Schmidt structure. Furthermore, as depicted
in table 3, the structure’s xeél valued DCT transform required only one haﬁx multiplication
more computational complexity than the TDL and no additional adaptive coefficients.

The transient performance of the lattice structure is greatly improved over that of the
TDL and frequency domain structures. If the increased computational requirements of
(K-l)J+2(K-l)2(J-1) ére acceptable, then the lattice structure is the processor of choice. It
is noted that this computational complexity is less than that required for least squares
methods. The convergence time of PARCOR coefficients in the lattice structure are
dependent upon the eigenstructure of independent backward prediction error correlation
matrices of smaller-order than the original correlation matrix. Once these coefficients

converge, a completely orthogonal process serves as input to the standard LMS adaptive




processor. Since the PARCOR cocetticients are similarly updated via the LMS algorithm,
the computational increase was able 10 be directly compared in wble 2 of the fast chapter.

The Gram-Schmidt structure’s performance was seen to be the best. It providcs‘an
orthogonal output to the adaptive filter via a direct orthogonalization process.  The
Gram-Schmidt structure, however, suffers from a largc computational burden in adapling
the [(K-DJJ(K-1)J-1]/2 LMS coetticients required for orthogonalization.

In thosc applications where the DCT performs as well as in vie examples of Chapter
111, the DCT frequency dumain structure should be the processor of choice for performance
versus complexity. The lattice structure provides the best overall performance for cost,
providing a nearly equivalent behavior to the Gram-Schmidt structure. Either of these latter
two structures will provide a transient performance that is numerically equivalent with the

least-squares techniques.

Areas for further research inclqdc studying the behavior of these structures when the
input process is non-stationary, investigating the utility of an adaptive GSC blocking matrix
in order to serve as a pre-processor and provide a more uncorrelated input to the adaptive
filter structure (especially for the case of the structure employing a fixed frequency domain

transformation), analysis of other d?rthogonal transforms in the frequency domain GSC

structure, and sensitivity analysis vi%z derivative or soft constraints to the LMS algorithm.

. -
Furthermore, the analysis of the Short-Time Fourier / cosine Transtorm and the application
of wavelet trausforms to the frequency domain structure are recommended in order to
provide a capability to track the input process statistics in a manner similar to that achizved

by the lattice and Gram-Schmidt structures.
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APPENDIX 1|

The basic reference for this appendix is Lancaster [18]. Throughout this section,

T will denote a general ficld and R will denote the set of real numbers.

Definition Al-1: A subspace
Lét E denote a linear space over a field T and consider a nonempty subset &, of tﬁc clements
from €. The operations of addition and scalar multiplication are defined for all elements of
€ and, in particular, for all elements belonging o &, . If these operations are ¢losed in &

so that for scalarso .yand vectors A \B:Ae & . Be &
|
1
|

then we say that &, is a subspace of .

aA+yB e &,

It & is a lincar space, it is readily verified that if 0 is the zero clement of €, then the
singleton {0} and the whole space & are subspaces of €. These are the trivial subspaces. It
- | , .
is important to note that the zero element of € is necessarily the zero element of any subspace

Eo of & This carf\ he shown to be true by considering « A =0 where o = 0 is scalar and
Ae &, }
Definition Al-2: A null space or kernel

The set of all vectors W such that AT W =0 is the nullspace or kernel of the matrix A and

is written Ker A .

.. T N -
Proposition Al-1: LetA” e I™*" Then the set of all solutions of the homogencous

equation AW =0 formsa subspace of I which, by definition A1-2, is £ = ker A.
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Proof of Proposition Al-1: Let: Y,Z: Y € £,Z € X:. Then the vectors must
satisfy ATY = 0and A’Z = 0. For any scalars & and y the vector A (oY +yZ ) =0.
Hence. X = ker A is a subspace.

Definition A1-3. A range space or image
A dual concept to that of the null space is the range space or image of a matrix A , denoted
ImA . LetA”e ™", then

mA=) el™:y=A4"W forsomeW eI,

e AL4 A span of a suhspacc

. I3 n . . .
Any subspace containing the elements a; - | must also contain all clements of the fem

n .
Y oiai forany o; € I'. This implics that the st of all linear combinations over I of

i=1
] n . . .
¢ 'y ¥ FS ) vi s W L @ 23 954 3 .
the clements ‘@a; . belonging to a linear space & generztes a subspace &, of €.

It can be seen that the subspace &, above is the minimal subspace of & containing

'

n . ‘ . ‘ . n [
;. in the sense that &, o &, for any subspace & which also contains /a; L This
1=

i=
o« e . . { n
minimal subspacc is called the lincar hull or span of ‘a; | over . Thus,
Rl P

n
' n 4 fo ]
spanai’ | =ae E:a=) oai'ai'el)

i=1

Definition A1-5: Idempotent Matrix

The matrix A is said to be idempotent if

-

A=A

which infers that for any positive integer i and idempotent matrix A , A = A.

R



Proposition Al-2: If P is an idempotent matrix, then:

1. I - P is idempotent.

2.Im (I -P)=kerP

3. I;er(IeP)=th
L U-P)'=1-2P+P’=I-P

2. ifye Im(I-P),theny=(I-P)x forsomexe I". Therefore,

Py=P(I-P)x=(P-P¥)x=0

and y € ker P. Conversely, if Py=0, then‘ (I-P)y=y and y e.Im (I - P)so that
Im({-P)=kerP.

3. similar to the above argument, let ye ker (I-P). Then Py=y since
(I-P)y=y-Py=0 and ye ImP sothatker (I -P)=1Im P.

Proposition Al-3: If P is idempotent, then ker P +Im P=T"

Proof of Proposition Al-3: For any xe I'" we can write x =x; +x; , where
x1=(I-P)x andx, =Px. Note Lhat.t;l € ker P while x; € Im P. Hence, the whole space
is defined as I = ker P + Im P. Furthermore, if x € ker P~ Im P, it must be the zero
element.

Definition A1-6: A projection matrix
An idempotent matrix is a projection matrix. Each idempotent matrix P generates two

unique mutually complementary subspaces &; = ker P and & =Im P and their sum is the
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entire space. Thus P performs the projection of the space I'" on the subspace &, parallel to

Ei1,oronto &, along &, .




- APPENDIX Il

This appendix presents the proof that the GSC prdccssor with any form of a spatial
matrix filter Wy satisfying
we-o0 . (A2-1)
rank (W)=(K-1)J : (A2-2)
where the constraint matrix C is defined in equation (2-5), will yicld an optimal processor
which is equivalent to both the partitioned form and the direct form CLMS processors under
the same constraint. This derivations follows directly from Jim [54).
The problem may be stated as follo&s:
Given the KJ x J dimensional constraint matrix C; the relationship W;C = 0, resulting from
the fact that look direction signals are eliminated from the GSC lower path; the KJ x KJ
non-singular matrix [Wg C1], whiich spans the entire Vsignal space since the rank of Cis J
and the rank of Wy is (K-1)J; and the KJ x KJ non-sihgular symmetric matrix Ryyx; then, from
equations (2-63) ahd (2-78), |
I-W! (WR. W 'W,R,, = R:)C (TR0 T (A2-3)
The proof is now developed through the existence of an orthogonal non-singular

\

transformation matrix 7 such that ‘\

_|o _\ . (A249)
e

Then,

(w,r’)[f,]w, WL 0)=W A9

We now let




A2-6
TRxxTT'—'[ATB:}:k ( )
B D
and consider an operation
T =W (WRW]) ' WRu = RIIC(CTRI O Ty (T7) (A2-T)

this implies
(A2-8)
=W, Y (W T TR DWW, Y TRWTT) = (TR (TC) |(TCTTRWTTY (1O (CTTT)

which may be written as

- ARV IR = RIE (CTRT'EY 18T (A2-9)
To show that equation (A2-9) is valid, let R be given by the block partition form matrix
ﬁ-] - X Y . (A2-10)
yT z ‘
Then
X=(A-BD'B)’! {A2-11)
Y=-A"'BZ
Z=D"'+D'B"(A-BDB)'BD'=(D- B'A"'B)"!
Furthermore,
. y )
et e[ v zv] e vi) (A1
_{o vz'!
0 I
_|o -a'B
0 I
and
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W (WROT)! WR=[ ‘JT] (U AU1'[UA UB) (42-13)

{1 a'B
o o

Therefore, equation (A2-3) holds and the proof is complete. Jim [54] also notes that there -
is no further restrictions on possible forms of t:e matrix filter W; other than satistying

equations (A2-1) and (A2-2). If Wj is valid, then so is any non-singular transformation of

Ws.

*U.S. GOVEANMENT PRINTING OFFICE: 1993-710-093-67149

122




¥

MISSION
OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3I systems. In additlion,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Alr Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software'producibiltty, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic rellability/maintainability and testability.
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